Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    The influence of rotator cuff tears on muscle and joint-contact loading after reverse total shoulder arthroplasty
    Ackland, DC ; Robinson, DL ; Wilkosz, A ; Wu, W ; Richardson, M ; Lee, P ; Tse, KM (WILEY, 2019-01)
  • Item
    Thumbnail Image
    Load response of an osseointegrated implant used in the treatment of unilateral transfemoral amputation: An early implant loosening case study.
    Robinson, DL ; Safai, L ; Harandi, VJ ; Graf, M ; Lizama, LEC ; Lee, P ; Galea, MP ; Khan, F ; Tse, KM ; Ackland, DC (Elsevier, 2020-03)
    BACKGROUND: Osseointegrated implants for transfemoral amputees facilitate direct load transfer between the prosthetic limb and femur; however, implant loosening is a common complication, and the associated implant-bone loads remain poorly understood. This case study aimed to use patient-specific computational modeling to evaluate bone-implant interface loading during standing and walking in a transfemoral amputee with an osseointegrated implant prior to prosthesis loosening and revision surgery. METHODS: One male transfemoral amputee with an osseointegrated implant was recruited (age: 59-yrs, weight: 83 kg) and computed tomography (CT) performed on the residual limb approximately 3 months prior to implant failure. Gait analyses were performed, and the CT images used to develop a finite element model of the patient's implant and surrounding bone. Simulations of static weight bearing, and over-ground walking were then performed. FINDINGS: During standing, maximum and minimum principal strains in trabecular bone adjacent to the implant were 0.26% and -0.30%, respectively. Strains generated at the instant of contralateral toe-off and contralateral heel strike during walking were substantially higher and resulted in local trabecular bone yielding. Specifically, the maximum and minimum principal strains in the thin layer of trabecular bone surrounding the distal end of the implant were 1.15% and -0.98%, respectively. INTERPRETATION: Localised yielding of trabecular bone at the interface between the femur and implant in transfemoral amputee osseointegrated prosthesis recipients may present a risk of implant loosening due to periprosthetic bone fracture during walking. Rehabilitation exercises should aim to produce implant-bone loading that stimulates bone remodelling to provide effective bone conditioning prior to ambulation.
  • Item
    Thumbnail Image
    Cortical and Trabecular Bone Fracture Characterisation in the Vertebral Body Using Acoustic Emission
    Robinson, DL ; Tse, KM ; Franklyn, M ; Zhang, JY ; Ackland, D ; Lee, PVS (SPRINGER, 2019-12)
    The ability to rapidly detect localised fractures of cortical and/or trabecular bone sustained by the vertebral body would enhance the analysis of vertebral fracture initiation and propagation during dynamic loading. In this study, high rate axial compression tests were performed on twenty sets of three-vertebra lumbar spine specimens. Acoustic Emission (AE) sensor measurements of sound wave pressure were used to classify isolated trabecular fractures and severe compressive fractures of vertebral body cortical and trabecular bone. Fracture detection using standard AE parameters was compared to that of traditional mechanical parameters obtained from load cell and displacement readings. Results indicated that the AE parameters achieved slightly enhanced classification of isolated trabecular fractures, whereas the mechanical parameters better identified combined fractures of cortical and trabecular bone. These findings demonstrate that AE may be used to promptly and accurately identify localised fractures of trabecular bone, whereas more extensive fractures of the vertebral body are best identified by load cell readings due to the considerable loss in compressive resistance. The discrimination thresholds corresponding to the AE parameters were based on calibrated measurements of AE wave pressure and may ultimately be used to examine the onset and progression of vertebral fracture in other loading scenarios.
  • Item
    Thumbnail Image
    Occlusion of the lumbar spine canal during high-rate axial compression
    Robinson, DL ; Tse, KM ; Franklyn, M ; Ackland, DC ; Richardson, MD ; Lee, PVS (ELSEVIER SCIENCE INC, 2020-10)
    BACKGROUND CONTEXT: While burst fracture is a well-known cause of spinal canal occlusion with dynamic, axial spinal compression, it is unclear how such loading mechanisms might cause occlusion without fracture. PURPOSE: To determine how spinal canal occlusion during dynamic compression of the lumbar spine is differentially caused by fracture or mechanisms without fracture and to examine the influence of spinal level on occlusion. STUDY DESIGN: A cadaveric biomechanical study. METHODS: Twenty sets of three-vertebrae specimens from all spinal levels between T12 and S1 were subjected to dynamic compression using a hydraulic loading apparatus up to a peak velocity between 0.1 and 0.9 m/s. The presence of canal occlusion was measured optically with a high-speed camera. This was repeated with incremental increases of 4% compressive strain until a vertebral fracture was detected using acoustic emission measurements and computed tomographic imaging. RESULTS: For axial compression without fracture, the peak occlusion (Omax) was 29.9±10.0%, which was deduced to be the result of posterior bulging of the intervertebral disc into the spinal canal. Omax correlated significantly with lumbar spinal level (p<.001), the compressive displacement (p<.001) and the cross-sectional area of the vertebra (p=.031). CONCLUSIONS: Spinal canal occlusion observed without vertebral fracture involves intervertebral disc bulging. The lower lumbar spine tended to be more severely occluded than more proximal levels. CLINICAL SIGNIFICANCE: Clinically, intermittent canal occlusion from disc bulging during dynamic compression may not show any radiographic features. The lower lumbar spine should be a focus of injury prevention intervention in cases of high-rate axial compression.