Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    A comparison of open-loop and closed-loop stimulation strategies to control excitation of retinal ganglion cells
    Kameneva, T ; Zarelli, D ; Nesic, D ; Grayden, DB ; Burkitt, AN ; Meffin, H (Elsevier, 2014-11-01)
    Currently, open-loop stimulation strategies are prevalent in medical bionic devices. These strategies involve setting electrical stimulation that does not change in response to neural activity. We investigate through simulation the advantages of using a closed-loop strategy that sets stimulation level based on continuous measurement of the level of neural activity. We propose a model-based controller design to control activation of retinal neurons. To deal with the lack of controllability and observability of the whole system, we use Kalman decomposition and control only the controllable and observable part. We show that the closed-loop controller performs better than the open-loop controller when perturbations are introduced into the system. We envisage that our work will give rise to more investigations of the closed-loop techniques in basic neuroscience research and in clinical applications of medical bionics.
  • Item
    Thumbnail Image
    The effect of morphology upon electrophysiological responses of retinal ganglion cells: simulation results
    Maturana, MI ; Kameneva, T ; Burkitt, AN ; Meffin, H ; Grayden, DB (SPRINGER, 2014-04)
    Retinal ganglion cells (RGCs) display differences in their morphology and intrinsic electrophysiology. The goal of this study is to characterize the ionic currents that explain the behavior of ON and OFF RGCs and to explore if all morphological types of RGCs exhibit the phenomena described in electrophysiological data. We extend our previous single compartment cell models of ON and OFF RGCs to more biophysically realistic multicompartment cell models and investigate the effect of cell morphology on intrinsic electrophysiological properties. The membrane dynamics are described using the Hodgkin - Huxley type formalism. A subset of published patch-clamp data from isolated intact mouse retina is used to constrain the model and another subset is used to validate the model. Two hundred morphologically distinct ON and OFF RGCs are simulated with various densities of ionic currents in different morphological neuron compartments. Our model predicts that the differences between ON and OFF cells are explained by the presence of the low voltage activated calcium current in OFF cells and absence of such in ON cells. Our study shows through simulation that particular morphological types of RGCs are capable of exhibiting the full range of phenomena described in recent experiments. Comparisons of outputs from different cells indicate that the RGC morphologies that best describe recent experimental results are ones that have a larger ratio of soma to total surface area.
  • Item
    Thumbnail Image
    Global activity shaping strategies for a retinal implant
    Spencer, MJ ; Kameneva, T ; Grayden, DB ; Meffin, H ; Burkitt, AN (IOP Publishing, 2019-09-18)
    Objective. Retinal prostheses provide visual perception via electrical stimulation of the retina using an implanted array of electrodes. The retinal activation resulting from each electrode is not point-like; instead each electrode introduces a spread of retinal activation that may overlap with activations from other electrodes. With most conventional stimulation strategies this overlap leads to image blur. Here we propose a 'shaping' algorithm that uses multiple electrodes to manipulate the current between electrodes in a desired way. Approach. We assume a forward model for the conversion of electrode strengths to retinal activation. Three alternative global shaping algorithms are developed by calculating reverse models under different assumptions: linear inversion using singular value decomposition to produce the pseudoinverse, a linearly constrained quadratic program, and a binary quadratic program to partition the target pattern. The algorithms were assessed using both the mean squared error between the resulting images and desired images, as well as their adherence to the maximum allowed electrode currents. Main results. Under wide activation spreads the linear inversion algorithm gave improved solutions but faced two limitations: under low-noise conditions the electrode amplitudes exceeded their set limit; the set of solutions did not include the possibility of using negative local currents to induce retinal activation. The linearly constrained quadratic program and binary quadratic program respectively addressed these problems, but required much greater computation time. Significance. This provides a framework for improving the resolution of future retinal implants, especially those with high density electrode arrays.
  • Item
    Thumbnail Image
    Toward a Biologically Plausible Model of LGN-V1 Pathways Based on Efficient Coding
    Lian, Y ; Grayden, DB ; Kameneva, T ; Meffin, H ; Burkitt, AN (Frontiers Media, 2019-03-14)
    Increasing evidence supports the hypothesis that the visual system employs a sparse code to represent visual stimuli, where information is encoded in an efficient way by a small population of cells that respond to sensory input at a given time. This includes simple cells in primary visual cortex (V1), which are defined by their linear spatial integration of visual stimuli. Various models of sparse coding have been proposed to explain physiological phenomena observed in simple cells. However, these models have usually made the simplifying assumption that inputs to simple cells already incorporate linear spatial summation. This overlooks the fact that these inputs are known to have strong non-linearities such the separation of ON and OFF pathways, or separation of excitatory and inhibitory neurons. Consequently thesemodels ignore a range of important experimental phenomena that are related to the emergence of linear spatial summation from non-linear inputs, such as segregation of ON and OFF sub-regions of simple cell receptive fields, the push-pull effect of excitation and inhibition, and phase-reversed cortico-thalamic feedback. Here, we demonstrate that a two-layer model of the visual pathway from the lateral geniculate nucleus to V1 that incorporates these biological constraints on the neural circuits and is based on sparse coding can account for the emergence of these experimental phenomena, diverse shapes of receptive fields and contrast invariance of orientation tuning of simple cells when the model is trained on natural images. The model suggests that sparse coding can be implemented by the V1 simple cells using neural circuits with a simple biologically plausible architecture.
  • Item
    Thumbnail Image
    Pattern Motion Processing by MT Neurons
    Eskikand, PZ ; Kameneva, T ; Burkitt, AN ; Grayden, DB ; Ibbotson, MR (Frontiers Media, 2019-06-21)
    Based on stimulation with plaid patterns, neurons in the Middle Temporal (MT) area of primate visual cortex are divided into two types: pattern and component cells. The prevailing theory suggests that pattern selectivity results from the summation of the outputs of component cells as part of a hierarchical visual pathway. We present a computational model of the visual pathway from primary visual cortex (V1) to MT that suggests an alternate model where the progression from component to pattern selectivity is not required. Using standard orientation-selective V1 cells, end-stopped V1 cells, and V1 cells with extra-classical receptive fields (RFs) as inputs to MT, the model shows that the degree of pattern or component selectivity in MT could arise from the relative strengths of the three V1 input types. Dominance of end-stopped V1 neurons in the model leads to pattern selectivity in MT, while dominance of V1 cells with extra-classical RFs result in component selectivity. This model may assist in designing experiments to further understand motion processing mechanisms in primate MT.
  • Item
    Thumbnail Image
    Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons
    Maturana, MI ; Apollo, NV ; Garrett, DJ ; Kameneva, T ; Cloherty, SL ; Grayden, DB ; Burkitt, AN ; Ibbotson, MR ; Meffin, H ; Fine, I (PUBLIC LIBRARY SCIENCE, 2018-02)
    Implantable retinal stimulators activate surviving neurons to restore a sense of vision in people who have lost their photoreceptors through degenerative diseases. Complex spatial and temporal interactions occur in the retina during multi-electrode stimulation. Due to these complexities, most existing implants activate only a few electrodes at a time, limiting the repertoire of available stimulation patterns. Measuring the spatiotemporal interactions between electrodes and retinal cells, and incorporating them into a model may lead to improved stimulation algorithms that exploit the interactions. Here, we present a computational model that accurately predicts both the spatial and temporal nonlinear interactions of multi-electrode stimulation of rat retinal ganglion cells (RGCs). The model was verified using in vitro recordings of ON, OFF, and ON-OFF RGCs in response to subretinal multi-electrode stimulation with biphasic pulses at three stimulation frequencies (10, 20, 30 Hz). The model gives an estimate of each cell's spatiotemporal electrical receptive fields (ERFs); i.e., the pattern of stimulation leading to excitation or suppression in the neuron. All cells had excitatory ERFs and many also had suppressive sub-regions of their ERFs. We show that the nonlinearities in observed responses arise largely from activation of presynaptic interneurons. When synaptic transmission was blocked, the number of sub-regions of the ERF was reduced, usually to a single excitatory ERF. This suggests that direct cell activation can be modeled accurately by a one-dimensional model with linear interactions between electrodes, whereas indirect stimulation due to summated presynaptic responses is nonlinear.
  • Item
    Thumbnail Image
    A Possible Role for End-Stopped V1 Neurons in the Perception of Motion: A Computational Model
    Eskikand, PZ ; Kameneva, T ; Ibbotson, MR ; Burkitt, AN ; Grayden, DB ; Chacron, MJ (PUBLIC LIBRARY SCIENCE, 2016-10-14)
    We present a model of the early stages of processing in the visual cortex, in particular V1 and MT, to investigate the potential role of end-stopped V1 neurons in solving the aperture problem. A hierarchical network is used in which the incoming motion signals provided by complex V1 neurons and end-stopped V1 neurons proceed to MT neurons at the next stage. MT neurons are categorized into two types based on their function: integration and segmentation. The role of integration neurons is to propagate unambiguous motion signals arriving from those V1 neurons that emphasize object terminators (e.g. corners). Segmentation neurons detect the discontinuities in the input stimulus to control the activity of integration neurons. Although the activity of the complex V1 neurons at the terminators of the object accurately represents the direction of the motion, their level of activity is less than the activity of the neurons along the edges. Therefore, a model incorporating end-stopped neurons is essential to suppress ambiguous motion signals along the edges of the stimulus. It is shown that the unambiguous motion signals at terminators propagate over the rest of the object to achieve an accurate representation of motion.
  • Item
    Thumbnail Image
    Spike history neural response model
    Kameneva, T ; Abramian, M ; Zarelli, D ; Nesic, D ; Burkitt, AN ; Meffin, H ; Grayden, DB (SPRINGER, 2015-06)
    There is a potential for improved efficacy of neural stimulation if stimulation levels can be modified dynamically based on the responses of neural tissue in real time. A neural model is developed that describes the response of neurons to electrical stimulation and that is suitable for feedback control neuroprosthetic stimulation. Experimental data from NZ white rabbit retinae is used with a data-driven technique to model neural dynamics. The linear-nonlinear approach is adapted to incorporate spike history and to predict the neural response of ganglion cells to electrical stimulation. To validate the fitness of the model, the penalty term is calculated based on the time difference between each simulated spike and the closest spike in time in the experimentally recorded train. The proposed model is able to robustly predict experimentally observed spike trains.
  • Item
    Thumbnail Image
    Retinal ganglion cells electrophysiology: the effect of cell morphology on impulse waveform
    Maturana, MI ; Wong, R ; Cloherty, SL ; Ibbotson, MR ; Hadjinicolaou, AE ; Grayden, DB ; Burkitt, AN ; Meffin, H ; O'Brien, BJ ; Kameneva, T (IEEE, 2013)
    There are 16 morphologically defined classes of rats retinal ganglion cells (RGCs). Using computer simulation of a realistic anatomically correct A1 mouse RGC, we investigate the effect of the cell's morphology on its impulse waveform, using the first-, and second-order time derivatives as well as the phase plot features. Using whole cell patch clamp recordings, we recorded the impulse waveform for each of the rat RGCs types. While we found some clear differences in many features of the impulse waveforms for A2 and B2 cells compared to other cell classes, many cell types did not show clear differences.