Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Cycles of self-reported seizure likelihood correspond to yield of diagnostic epilepsy monitoring
    Karoly, PJ ; Eden, D ; Nurse, ES ; Cook, MJ ; Taylor, J ; Dumanis, S ; Richardson, MP ; Brinkmann, BH ; Freestone, DR (WILEY, 2021-02)
    OBJECTIVE: Video-electroencephalography (vEEG) is an important component of epilepsy diagnosis and management. Nevertheless, inpatient vEEG monitoring fails to capture seizures in up to one third of patients. We hypothesized that personalized seizure forecasts could be used to optimize the timing of vEEG. METHODS: We used a database of ambulatory vEEG studies to select a cohort with linked electronic seizure diaries of more than 20 reported seizures over at least 8 weeks. The total cohort included 48 participants. Diary seizure times were used to detect individuals' multiday seizure cycles and estimate times of high seizure risk. We compared whether estimated seizure risk was significantly different between conclusive and inconclusive vEEGs, and between vEEG with and without recorded epileptic activity. vEEGs were conducted prior to self-reported seizures; hence, the study aimed to provide a retrospective proof of concept that cycles of seizure risk were correlated with vEEG outcomes. RESULTS: Estimated seizure risk was significantly higher for conclusive vEEGs and vEEGs with epileptic activity. Across all cycle strengths, the average time in high risk during vEEG was 29.1% compared with 14% for the conclusive/inconclusive groups and 32% compared to 18% for the epileptic activity/no epileptic activity groups. On average, 62.5% of the cohort showed increased time in high risk during their previous vEEG when epileptic activity was recorded (compared to 28% of the cohort where epileptic activity was not recorded). For conclusive vEEGs, 50% of the cohort had increased time in high risk, compared to 21.5% for inconclusive vEEGs. SIGNIFICANCE: Although retrospective, this study provides a proof of principle that scheduling monitoring times based on personalized seizure risk forecasts can improve the yield of vEEG. Forecasts can be developed at low cost from mobile seizure diaries. A simple scheduling tool to improve diagnostic outcomes may reduce cost and risks associated with delayed or missed diagnosis in epilepsy.
  • Item
    Thumbnail Image
    Multiday cycles of heart rate are associated with seizure likelihood: An observational cohort study
    Karoly, PJ ; Stirling, RE ; Freestone, DR ; Nurse, ES ; Maturana, M ; Halliday, AJ ; Neal, A ; Gregg, NM ; Brinkmann, BH ; Richardson, MP ; La Gerche, A ; Grayden, DB ; D'Souza, W ; Cook, MJ (ELSEVIER, 2021-10)
    BACKGROUND: Circadian and multiday rhythms are found across many biological systems, including cardiology, endocrinology, neurology, and immunology. In people with epilepsy, epileptic brain activity and seizure occurrence have been found to follow circadian, weekly, and monthly rhythms. Understanding the relationship between these cycles of brain excitability and other physiological systems can provide new insight into the causes of multiday cycles. The brain-heart link has previously been considered in epilepsy research, with potential implications for seizure forecasting, therapy, and mortality (i.e., sudden unexpected death in epilepsy). METHODS: We report the results from a non-interventional, observational cohort study, Tracking Seizure Cycles. This study sought to examine multiday cycles of heart rate and seizures in adults with diagnosed uncontrolled epilepsy (N=31) and healthy adult controls (N=15) using wearable smartwatches and mobile seizure diaries over at least four months (M=12.0, SD=5.9; control M=10.6, SD=6.4). Cycles in heart rate were detected using a continuous wavelet transform. Relationships between heart rate cycles and seizure occurrence were measured from the distributions of seizure likelihood with respect to underlying cycle phase. FINDINGS: Heart rate cycles were found in all 46 participants (people with epilepsy and healthy controls), with circadian (N=46), about-weekly (N=25) and about-monthly (N=13) rhythms being the most prevalent. Of the participants with epilepsy, 19 people had at least 20 reported seizures, and 10 of these had seizures significantly phase locked to their multiday heart rate cycles. INTERPRETATION: Heart rate cycles showed similarities to multiday epileptic rhythms and may be comodulated with seizure likelihood. The relationship between heart rate and seizures is relevant for epilepsy therapy, including seizure forecasting, and may also have implications for cardiovascular disease. More broadly, understanding the link between multiday cycles in the heart and brain can shed new light on endogenous physiological rhythms in humans. FUNDING: This research received funding from the Australian Government National Health and Medical Research Council (investigator grant 1178220), the Australian Government BioMedTech Horizons program, and the Epilepsy Foundation of America's 'My Seizure Gauge' grant.
  • Item
    Thumbnail Image
    Seizure Forecasting Using a Novel Sub-Scalp Ultra-Long Term EEG Monitoring System
    Stirling, RE ; Maturana, M ; Karoly, PJ ; Nurse, ES ; McCutcheon, K ; Grayden, DB ; Ringo, SG ; Heasman, JM ; Hoare, RJ ; Lai, A ; D'Souza, W ; Seneviratne, U ; Seiderer, L ; McLean, KJ ; Bulluss, KJ ; Murphy, M ; Brinkmann, BH ; Richardson, MP ; Freestone, DR ; Cook, MJ (FRONTIERS MEDIA SA, 2021-08-23)
    Accurate identification of seizure activity, both clinical and subclinical, has important implications in the management of epilepsy. Accurate recognition of seizure activity is essential for diagnostic, management and forecasting purposes, but patient-reported seizures have been shown to be unreliable. Earlier work has revealed accurate capture of electrographic seizures and forecasting is possible with an implantable intracranial device, but less invasive electroencephalography (EEG) recording systems would be optimal. Here, we present preliminary results of seizure detection and forecasting with a minimally invasive sub-scalp device that continuously records EEG. Five participants with refractory epilepsy who experience at least two clinically identifiable seizures monthly have been implanted with sub-scalp devices (Minder®), providing two channels of data from both hemispheres of the brain. Data is continuously captured via a behind-the-ear system, which also powers the device, and transferred wirelessly to a mobile phone, from where it is accessible remotely via cloud storage. EEG recordings from the sub-scalp device were compared to data recorded from a conventional system during a 1-week ambulatory video-EEG monitoring session. Suspect epileptiform activity (EA) was detected using machine learning algorithms and reviewed by trained neurophysiologists. Seizure forecasting was demonstrated retrospectively by utilizing cycles in EA and previous seizure times. The procedures and devices were well-tolerated and no significant complications have been reported. Seizures were accurately identified on the sub-scalp system, as visually confirmed by periods of concurrent conventional scalp EEG recordings. The data acquired also allowed seizure forecasting to be successfully undertaken. The area under the receiver operating characteristic curve (AUC score) achieved (0.88), which is comparable to the best score in recent, state-of-the-art forecasting work using intracranial EEG.
  • Item
    Thumbnail Image
    Epileptic Seizure Cycles: Six Common Clinical Misconceptions
    Karoly, PJ ; Freestone, DR ; Eden, D ; Stirling, RE ; Li, L ; Vianna, PF ; Maturana, MI ; D'Souza, WJ ; Cook, MJ ; Richardson, MP ; Brinkmann, BH ; Nurse, ES (FRONTIERS MEDIA SA, 2021-08-04)
  • Item
    Thumbnail Image
    Seizure Diaries and Forecasting With Wearables: Epilepsy Monitoring Outside the Clinic
    Brinkmann, BH ; Karoly, PJ ; Nurse, ES ; Dumanis, SB ; Nasseri, M ; Viana, PF ; Schulze-Bonhage, A ; Freestone, DR ; Worrell, G ; Richardson, MP ; Cook, MJ (FRONTIERS MEDIA SA, 2021-07-13)
    It is a major challenge in clinical epilepsy to diagnose and treat a disease characterized by infrequent seizures based on patient or caregiver reports and limited duration clinical testing. The poor reliability of self-reported seizure diaries for many people with epilepsy is well-established, but these records remain necessary in clinical care and therapeutic studies. A number of wearable devices have emerged, which may be capable of detecting seizures, recording seizure data, and alerting caregivers. Developments in non-invasive wearable sensors to measure accelerometry, photoplethysmography (PPG), electrodermal activity (EDA), electromyography (EMG), and other signals outside of the traditional clinical environment may be able to identify seizure-related changes. Non-invasive scalp electroencephalography (EEG) and minimally invasive subscalp EEG may allow direct measurement of seizure activity. However, significant network and computational infrastructure is needed for continuous, secure transmission of data. The large volume of data acquired by these devices necessitates computer-assisted review and detection to reduce the burden on human reviewers. Furthermore, user acceptability of such devices must be a paramount consideration to ensure adherence with long-term device use. Such devices can identify tonic-clonic seizures, but identification of other seizure semiologies with non-EEG wearables is an ongoing challenge. Identification of electrographic seizures with subscalp EEG systems has recently been demonstrated over long (>6 month) durations, and this shows promise for accurate, objective seizure records. While the ability to detect and forecast seizures from ambulatory intracranial EEG is established, invasive devices may not be acceptable for many individuals with epilepsy. Recent studies show promising results for probabilistic forecasts of seizure risk from long-term wearable devices and electronic diaries of self-reported seizures. There may also be predictive value in individuals' symptoms, mood, and cognitive performance. However, seizure forecasting requires perpetual use of a device for monitoring, increasing the importance of the system's acceptability to users. Furthermore, long-term studies with concurrent EEG confirmation are lacking currently. This review describes the current evidence and challenges in the use of minimally and non-invasive devices for long-term epilepsy monitoring, the essential components in remote monitoring systems, and explores the feasibility to detect and forecast impending seizures via long-term use of these systems.
  • Item
    Thumbnail Image
    Forecasting Seizure Likelihood With Wearable Technology
    Stirling, RE ; Grayden, DB ; D'Souza, W ; Cook, MJ ; Nurse, E ; Freestone, DR ; Payne, DE ; Brinkmann, BH ; Pal Attia, T ; Viana, PF ; Richardson, MP ; Karoly, PJ (FRONTIERS MEDIA SA, 2021-07-15)
    The unpredictability of epileptic seizures exposes people with epilepsy to potential physical harm, restricts day-to-day activities, and impacts mental well-being. Accurate seizure forecasters would reduce the uncertainty associated with seizures but need to be feasible and accessible in the long-term. Wearable devices are perfect candidates to develop non-invasive, accessible forecasts but are yet to be investigated in long-term studies. We hypothesized that machine learning models could utilize heart rate as a biomarker for well-established cycles of seizures and epileptic activity, in addition to other wearable signals, to forecast high and low risk seizure periods. This feasibility study tracked participants' (n = 11) heart rates, sleep, and step counts using wearable smartwatches and seizure occurrence using smartphone seizure diaries for at least 6 months (mean = 14.6 months, SD = 3.8 months). Eligible participants had a diagnosis of refractory epilepsy and reported at least 20 seizures (mean = 135, SD = 123) during the recording period. An ensembled machine learning and neural network model estimated seizure risk either daily or hourly, with retraining occurring on a weekly basis as additional data was collected. Performance was evaluated retrospectively against a rate-matched random forecast using the area under the receiver operating curve. A pseudo-prospective evaluation was also conducted on a held-out dataset. Of the 11 participants, seizures were predicted above chance in all (100%) participants using an hourly forecast and in ten (91%) participants using a daily forecast. The average time spent in high risk (prediction time) before a seizure occurred was 37 min in the hourly forecast and 3 days in the daily forecast. Cyclic features added the most predictive value to the forecasts, particularly circadian and multiday heart rate cycles. Wearable devices can be used to produce patient-specific seizure forecasts, particularly when biomarkers of seizure and epileptic activity cycles are utilized.
  • Item
    Thumbnail Image
    Ensembling crowdsourced seizure prediction algorithms using long-term human intracranial EEG
    Reuben, C ; Karoly, P ; Freestone, DR ; Temko, A ; Barachant, A ; Li, F ; Titericz, G ; Lang, BW ; Lavery, D ; Roman, K ; Broadhead, D ; Jones, G ; Tang, Q ; Ivanenko, I ; Panichev, O ; Proix, T ; Nahlik, M ; Grunberg, DB ; Grayden, DB ; Cook, MJ ; Kuhlmann, L (Wiley, 2020-02)
    Seizure prediction is feasible, but greater accuracy is needed to make seizure prediction clinically viable across a large group of patients. Recent work crowdsourced state‐of‐the‐art prediction algorithms in a worldwide competition, yielding improvements in seizure prediction performance for patients whose seizures were previously found hard to anticipate. The aim of the current analysis was to explore potential performance improvements using an ensemble of the top competition algorithms. The results suggest that minor increments in performance may be possible; however, the outcomes of statistical testing limit the confidence in these increments. Our results suggest that for the specific algorithms, evaluation framework, and data considered here, incremental improvements are achievable but there may be upper bounds on machine learning–based seizure prediction performance for some patients whose seizures are challenging to predict. Other more tailored approaches that, for example, take into account a deeper understanding of preictal mechanisms, patient‐specific sleep‐wake rhythms, or novel measurement approaches, may still offer further gains for these types of patients.
  • Item
    Thumbnail Image
    Identifying seizure risk factors: A comparison of sleep, weather, and temporal features using a Bayesian forecast
    Payne, DE ; Dell, KL ; Karoly, PJ ; Kremen, V ; Gerla, V ; Kuhlmann, L ; Worrell, GA ; Cook, MJ ; Grayden, DB ; Freestone, DR (WILEY, 2021-02)
    OBJECTIVE: Most seizure forecasting algorithms have relied on features specific to electroencephalographic recordings. Environmental and physiological factors, such as weather and sleep, have long been suspected to affect brain activity and seizure occurrence but have not been fully explored as prior information for seizure forecasts in a patient-specific analysis. The study aimed to quantify whether sleep, weather, and temporal factors (time of day, day of week, and lunar phase) can provide predictive prior probabilities that may be used to improve seizure forecasts. METHODS: This study performed post hoc analysis on data from eight patients with a total of 12.2 years of continuous intracranial electroencephalographic recordings (average = 1.5 years, range = 1.0-2.1 years), originally collected in a prospective trial. Patients also had sleep scoring and location-specific weather data. Histograms of future seizure likelihood were generated for each feature. The predictive utility of individual features was measured using a Bayesian approach to combine different features into an overall forecast of seizure likelihood. Performance of different feature combinations was compared using the area under the receiver operating curve. Performance evaluation was pseudoprospective. RESULTS: For the eight patients studied, seizures could be predicted above chance accuracy using sleep (five patients), weather (two patients), and temporal features (six patients). Forecasts using combined features performed significantly better than chance in six patients. For four of these patients, combined forecasts outperformed any individual feature. SIGNIFICANCE: Environmental and physiological data, including sleep, weather, and temporal features, provide significant predictive information on upcoming seizures. Although forecasts did not perform as well as algorithms that use invasive intracranial electroencephalography, the results were significantly above chance. Complementary signal features derived from an individual's historic seizure records may provide useful prior information to augment traditional seizure detection or forecasting algorithms. Importantly, many predictive features used in this study can be measured noninvasively.
  • Item
    Thumbnail Image
    Seizure forecasting and cyclic control of seizures
    Stirling, RE ; Cook, MJ ; Grayden, DB ; Karoly, PJ (WILEY, 2021-02)
    Epilepsy is a unique neurologic condition characterized by recurrent seizures, where causes, underlying biomarkers, triggers, and patterns differ across individuals. The unpredictability of seizures can heighten fear and anxiety in people with epilepsy, making it difficult to take part in day-to-day activities. Epilepsy researchers have prioritized developing seizure prediction algorithms to combat episodic seizures for decades, but the utility and effectiveness of prediction algorithms has not been investigated thoroughly in clinical settings. In contrast, seizure forecasts, which theoretically provide the probability of a seizure at any time (as opposed to predicting the next seizure occurrence), may be more feasible. Many advances have been made over the past decade in the field of seizure forecasting, including improvements in algorithms as a result of machine learning and exploration of non-EEG-based measures of seizure susceptibility, such as physiological biomarkers, behavioral changes, environmental drivers, and cyclic seizure patterns. For example, recent work investigating periodicities in individual seizure patterns has determined that more than 90% of people have circadian rhythms in their seizures, and many also experience multiday, weekly, or longer cycles. Other potential indicators of seizure susceptibility include stress levels, heart rate, and sleep quality, all of which have the potential to be captured noninvasively over long time scales. There are many possible applications of a seizure-forecasting device, including improving quality of life for people with epilepsy, guiding treatment plans and medication titration, optimizing presurgical monitoring, and focusing scientific research. To realize this potential, it is vital to better understand the user requirements of a seizure-forecasting device, continue to advance forecasting algorithms, and design clear guidelines for prospective clinical trials of seizure forecasting.
  • Item
    Thumbnail Image
    Machine learning and wearable devices of the future
    Beniczky, S ; Karoly, P ; Nurse, E ; Ryvlin, P ; Cook, M (WILEY, 2021-03)
    Machine learning (ML) is increasingly recognized as a useful tool in healthcare applications, including epilepsy. One of the most important applications of ML in epilepsy is seizure detection and prediction, using wearable devices (WDs). However, not all currently available algorithms implemented in WDs are using ML. In this review, we summarize the state of the art of using WDs and ML in epilepsy, and we outline future development in these domains. There is published evidence for reliable detection of epileptic seizures using implanted electroencephalography (EEG) electrodes and wearable, non-EEG devices. Application of ML using the data recorded with WDs from a large number of patients could change radically the way we diagnose and manage patients with epilepsy.