Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    A Neural Mass Model of Spontaneous Burst Suppression and Epileptic Seizures
    Freestone, DR ; Nesic, D ; Jafarian, A ; Cook, MJ ; Grayden, DB (IEEE, 2013-01-01)
    The paper presents a neural mass model that is capable of simulating the transition to and from various forms of paroxysmal activity such as burst suppression and epileptic seizure-like waveforms. These events occur without changing parameters in the model. The model is based on existing neural mass models, with the addition of feedback of fast dynamics to create slowly time varying parameters, or slow states. The goal of this research is to establish a link between system properties that modulate neural activity and the fast changing dynamics, such as membrane potentials and firing rates that can be manipulated using electrical stimulation. Establishing this link is likely to be a necessary component of a closed-loop system for feedback control of pathological neural activity.
  • Item
    Thumbnail Image
    Slow-Fast Duffing Neural Mass Model
    Jafarian, A ; Freestone, DR ; Nesic, D ; Grayden, D (IEEE, 2019)
    Epileptic seizures may be initiated by random neuronal fluctuations and/or by pathological slow regulatory dynamics of ion currents. This paper presents extensions to the Jansen and Rit neural mass model (JRNMM) to replicate paroxysmal transitions in intracranial electroencephalogram (iEEG) recordings. First, the Duffing NMM (DNMM) is introduced to emulate stochastic generators of seizures. The DNMM is constructed by applying perturbations to linear models of synaptic transmission in each neural population of the JRNMM. Then, the slow-fast DNMM is introduced by considering slow dynamics (relative to membrane potential and firing rate) of some internal parameters of the DNMM to replicate pathological evolution of ion currents. Through simulation, it is illustrated that the slow-fast DNMM exhibits transitions to and from seizures with etiologies that are linked either to random input fluctuations or pathological evolution of slow states. Estimation and optimization of a log likelihood function (LLF) using a continuous-discrete unscented Kalman filter (CD-UKF) and a genetic algorithm (GA) are performed to capture dynamics of iEEG data with paroxysmal transitions.