Research, Innovation and Commercialisation - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 49
  • Item
    No Preview Available
    Tucatinib promotes immune activation and synergizes with programmed cell death-1 and programmed cell death-ligand 1 inhibition in HER2-positive breast cancer
    Li, R ; Sant, S ; Brown, E ; Caramia, F ; Nikolic, B ; Clarke, K ; Byrne, A ; Gonzalez, LEL ; Savas, P ; Luen, SJ ; Teo, ZL ; Virassamy, B ; Neeson, PJ ; Darcy, PK ; Loi, S (OXFORD UNIV PRESS INC, 2023-07-06)
    BACKGROUND: Programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) inhibitors have poor efficacy in patients with trastuzumab-resistant advanced HER2-positive breast cancer. Tucatinib is a potent, selective anti-HER2 tyrosine kinase inhibitor with proven clinical benefit in the advanced setting in patients with trastuzumab resistance. We investigated if tucatinib can alter the tumor microenvironment and if this could be harnessed for therapeutic efficacy. METHODS: We investigated the antitumor efficacy and contribution of the immune response of tucatinib using 2 immunocompetent, HER2-positive murine breast cancer models (trastuzumab-sensitive H2N113; trastuzumab-resistant Fo5) and the efficacy of tucatinib with trastuzumab and PD-1 or PD-L1 checkpoint inhibitors. RESULTS: In both models, tucatinib statistically significantly inhibited tumor growth and demonstrated dose-dependent efficacy. Ex vivo analysis by flow cytometry of tumor-infiltrating lymphocytes in mice treated with tucatinib showed increased frequency, higher proliferation, and enhanced effector function of CD8+ effector memory T cells. Tucatinib treatment also increased frequency of CD8+PD-1+ and CD8+TIM3+ T cells, CD49+ natural killer cells, monocytes, and major histocompatibility complex II expression on dendritic cells and macrophages and a decrease in myeloid-derived suppressor cells. Gene expression analysis revealed statistically significant enrichment in pathways associated with immune activation, type I and II interferon response, adaptive immune response, and antigen receptor signaling. In vivo, tucatinib and α-PD-L1 or α-PD-1 demonstrated statistically significantly increased efficacy and improved survival of mice compared with tucatinib alone. CONCLUSION: Tucatinib modulates the immune microenvironment favorably, and combination treatment with α-PD-L1 or α-PD-1 demonstrated increased efficacy in preclinical HER2-positive tumor models. These findings provide a rationale for investigation of tucatinib and immune checkpoint inhibition in the clinic.
  • Item
    Thumbnail Image
    G-CSF Receptor Deletion Amplifies Cortical Bone Dysfunction in Mice With STAT3 Hyperactivation in Osteocytes
    Isojima, T ; Walker, EC ; Poulton, IJ ; McGregor, NE ; Wicks, IP ; Gooi, JH ; Martin, TJ ; Sims, NA (WILEY, 2022-10)
  • Item
    Thumbnail Image
    Differential antigen requirements by diverse MR1-restricted T cells (vol 100, pg 112, 2022)
    Seneviratna, R ; Redmond, SJ ; McWilliam, HEG ; Reantragoon, R ; Villadangos, JA ; McCluskey, J ; Godfrey, D ; Gherardin, NA (WILEY, 2022-03)
  • Item
    No Preview Available
    Are NKT cells a useful predictor of COVID-19 severity?
    Koay, H-F ; Gherardin, NA ; Nguyen, THO ; Zhang, W ; Habel, JR ; Seneviratna, R ; James, F ; Holmes, NE ; Smibert, OC ; Gordon, CL ; Trubiano, JA ; Kedzierska, K ; Godfrey, DI (CELL PRESS, 2022-02-08)
  • Item
    No Preview Available
    Structural biology of cell surface receptors implicated in Alzheimer's disease
    Hermans, SJ ; Nero, TL ; Morton, CJ ; Gooi, JH ; Crespi, GAN ; Hancock, NC ; Gao, C ; Ishii, K ; Markulic, J ; Parker, MW (SPRINGERNATURE, 2022-02)
    Alzheimer's disease is a common and devastating age-related disease with no effective disease-modifying treatments. Human genetics has implicated a wide range of cell surface receptors as playing a role in the disease, many of which are involved in the production or clearance of neurotoxins in the brain. Amyloid precursor protein, a membrane-bound signaling molecule, is at the very heart of the disease: hereditary mutations in its gene are associated with a greatly increased risk of getting the disease. A proteolytic breakdown product of amyloid precursor protein, the neurotoxic Aβ peptide, has been the target for many drug discovery efforts. Antibodies have been designed to target Aβ production with some success, although they have not proved efficacious in clinical trials with regards to cognitive benefits to date. Many of the recently identified genes associated with late-onset Alzheimer's disease risk are integral to the innate immune system. Some of these genes code for microglial proteins, such as the strongest genetic risk factor for the disease, namely APOE, and the cell surface receptors CD33 and TREM2 which are involved in clearance of the Aβ peptide from the brain. In this review, we show how structural biology has provided key insights into the normal functioning of these cell surface receptors and provided a framework for developing novel treatments to combat Alzheimer's disease.
  • Item
    Thumbnail Image
    Anionic Phospholipid Interactions of the Prion Protein N Terminus Are Minimally Perturbing and Not Driven Solely by the Octapeptide Repeat Domain
    Boland, MP ; Hatty, CR ; Separovic, F ; Hill, AF ; Tew, DJ ; Barnham, KJ ; Haigh, CL ; James, M ; Masters, CL ; Collins, SJ (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2010-10-15)
    Although the N terminus of the prion protein (PrP(C)) has been shown to directly associate with lipid membranes, the precise determinants, biophysical basis, and functional implications of such binding, particularly in relation to endogenously occurring fragments, are unresolved. To better understand these issues, we studied a range of synthetic peptides: specifically those equating to the N1 (residues 23-110) and N2 (23-89) fragments derived from constitutive processing of PrP(C) and including those representing arbitrarily defined component domains of the N terminus of mouse prion protein. Utilizing more physiologically relevant large unilamellar vesicles, fluorescence studies at synaptosomal pH (7.4) showed absent binding of all peptides to lipids containing the zwitterionic headgroup phosphatidylcholine and mixtures containing the anionic headgroups phosphatidylglycerol or phosphatidylserine. At pH 5, typical of early endosomes, quartz crystal microbalance with dissipation showed the highest affinity binding occurred with N1 and N2, selective for anionic lipid species. Of particular note, the absence of binding by individual peptides representing component domains underscored the importance of the combination of the octapeptide repeat and the N-terminal polybasic regions for effective membrane interaction. In addition, using quartz crystal microbalance with dissipation and solid-state NMR, we characterized for the first time that both N1 and N2 deeply insert into the lipid bilayer with minimal disruption. Potential functional implications related to cellular stress responses are discussed.
  • Item
    Thumbnail Image
    Biparatopic nanobodies targeting the receptor binding domain efficiently neutralize SARS-CoV-2
    Pymm, P ; Redmond, SJ ; Dolezal, O ; Mordant, F ; Lopez, E ; Cooney, JP ; Davidson, KC ; Haycroft, ER ; Tan, CW ; Seneviratna, R ; Grimley, SL ; Purcell, DFJ ; Kent, SJ ; Wheatley, AK ; Wang, L-F ; Leis, A ; Glukhova, A ; Pellegrini, M ; Chung, AW ; Subbarao, K ; Uldrich, AP ; Tham, W-H ; Godfrey, DI ; Gherardin, NA (CELL PRESS, 2022-11-18)
    The development of therapeutics to prevent or treat COVID-19 remains an area of intense focus. Protein biologics, including monoclonal antibodies and nanobodies that neutralize virus, have potential for the treatment of active disease. Here, we have used yeast display of a synthetic nanobody library to isolate nanobodies that bind the receptor-binding domain (RBD) of SARS-CoV-2 and neutralize the virus. We show that combining two clones with distinct binding epitopes within the RBD into a single protein construct to generate biparatopic reagents dramatically enhances their neutralizing capacity. Furthermore, the biparatopic nanobodies exhibit enhanced control over clinically relevant RBD variants that escaped recognition by the individual nanobodies. Structural analysis of biparatopic binding to spike (S) protein revealed a unique binding mode whereby the two nanobody paratopes bridge RBDs encoded by distinct S trimers. Accordingly, biparatopic nanobodies offer a way to rapidly generate powerful viral neutralizers with enhanced ability to control viral escape mutants.
  • Item
    Thumbnail Image
    Recombinant influenza virus expressing HIV-1 p24 capsid protein induces mucosal HIV-specific CD8 T-cell responses
    Tan, H-X ; Gilbertson, BP ; Jegaskanda, S ; Alcantara, S ; Amarasena, T ; Stambas, J ; McAuley, JL ; Kent, SJ ; De Rose, R (ELSEVIER SCI LTD, 2016-02-24)
    Influenza viruses are promising mucosal vaccine vectors for HIV but their use has been limited by difficulties in engineering the expression of large amounts of foreign protein. We developed recombinant influenza viruses incorporating the HIV-1 p24 gag capsid into the NS-segment of PR8 (H1N1) and X31 (H3N2) influenza viruses with the use of multiple 2A ribosomal skip sequences. Despite the insertion of a sizable HIV-1 gene into the influenza genome, recombinant viruses were readily rescued to high titers. Intracellular expression of p24 capsid was confirmed by in vitro infection assays. The recombinant influenza viruses were subsequently tested as mucosal vaccines in BALB/c mice. Recombinant viruses were attenuated and safe in immunized mice. Systemic and mucosal HIV-specific CD8 T-cell responses were elicited in mice that were immunized via intranasal route with a prime-boost regimen. Isolated HIV-specific CD8 T-cells displayed polyfunctional cytokine and degranulation profiles. Mice boosted via intravaginal route induced recall responses from the distal lung mucosa and developed heightened HIV-specific CD8 T-cell responses in the vaginal mucosa. These findings demonstrate the potential utility of recombinant influenza viruses as vaccines for mucosal immunity against HIV-1 infection.
  • Item
    Thumbnail Image
    Induction of vaginal-resident HIV-specific CD8 T cells with mucosal prime-boost immunization
    Tan, H-X ; Wheatley, AK ; Esterbauer, R ; Jegaskanda, S ; Glass, JJ ; Masopust, D ; De Rose, R ; Kent, SJ (NATURE PUBLISHING GROUP, 2018-05)
    Tissue-resident memory (TRM) CD8 T cells survey a range of non-lymphoid mucosal tissues where they rapidly mediate clearance of viral infections at the entry portals. Vaccines that establish CD8 TRM cells in the cervicovaginal mucosa hold promise for effective immunity against sexually transmitted HIV. We demonstrate that HIV-specific CD8 TRM cells can be established in the murine vaginal mucosa using a combined intranasal and intravaginal mucosal immunization with recombinant influenza-HIV vectors. Using in situ tetramer immunofluorescence microscopy, we found that this mucosally administered prime-boost immunization also resulted in the durable seeding of CD8 T cells in the frontline vaginal epithelial compartment as opposed to the vaginal submucosa. Upon cognate antigen recognition within the vaginal mucosa, these HIV-specific CD8 TRM cells rapidly initiated a tissue-wide state of immunity. The activation of HIV-specific CD8 TRM cells resulted in the upregulation of endothelial vessel addressin expression and substantial recruitment of both adaptive and innate immune cells in the vaginal mucosa. These findings suggest that the epithelial localization of HIV-specific CD8 TRM cell populations and their capacity to rapidly activate both arms of the immune system could significantly augment frontline defenses against vaginal HIV infection.
  • Item
    Thumbnail Image
    Effect of cochlear implantation on middle ear function: A three-month prospective study
    Wasson, JD ; Campbell, L ; Chambers, S ; Hampson, A ; Briggs, RJS ; O'Leary, SJ (WILEY, 2018-05)
    OBJECTIVES/HYPOTHESIS: To determine if cochlear implantation has a delayed effect on the middle ear conductive hearing mechanism by measuring laser Doppler vibrometry (LDV) of the tympanic membrane (TM) in both implanted and contralateral control ears preoperatively and 3 months postoperatively, and then comparing the relative change in LDV outcome measures between implanted and control ears. STUDY DESIGN: Prospective cohort study. METHODS: Eleven preoperative adult unilateral cochlear implant recipients in previously unoperated ears with normal anatomy and aerated temporal bones were included in this study. The magnitude and phase angle of umbo velocity transfer function in response to air- conduction (AC) stimulus, and the magnitude of umbo velocity in response to bone- conduction (BC) stimulus were measured in the implant ear and the contralateral control ear preoperatively and 3 months postoperatively and compared. RESULTS: No significant changes in the magnitude or phase angle of TM velocity in response to either AC or BC stimulus were observed in the implanted ear relative to the contralateral control ear 3 months following cochlear implantation. CONCLUSIONS: From the results of LDV measurements, it can be said that cochlear implantation has no significant delayed effect on the middle ear conductive mechanism. LEVEL OF EVIDENCE: 4. Laryngoscope, 128:1207-1212, 2018.