Surgery (St Vincent's) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    Thumbnail Image
    Hypoxic preconditioning of myoblasts implanted in a tissue engineering chamber significantly increases local angiogenesis via upregulation of myoblast vascular endothelial growth factor-A expression and downregulation of miRNA-1, miRNA-206 and angiopoietin-1
    Taylor, CJ ; Church, JE ; Williams, MD ; Gerrand, Y-W ; Keramidaris, E ; Palmer, JA ; Galea, LA ; Penington, AJ ; Morrison, WA ; Mitchell, GM (WILEY, 2018-01)
    Vascularization is a major hurdle for growing three-dimensional tissue engineered constructs. This study investigated the mechanisms involved in hypoxic preconditioning of primary rat myoblasts in vitro and their influence on local angiogenesis postimplantation. Primary rat myoblast cultures were exposed to 90 min hypoxia at <1% oxygen followed by normoxia for 24 h. Real time (RT) polymerase chain reaction evaluation indicated that 90 min hypoxia resulted in significant downregulation of miR-1 and miR-206 (p < 0.05) and angiopoietin-1 (p < 0.05) with upregulation of vascular endothelial growth factor-A (VEGF-A; p < 0.05). The miR-1 and angiopoietin-1 responses remained significantly downregulated after a 24 h rest phase. In addition, direct inhibition of miR-206 in L6 myoblasts caused a significant increase in VEGF-A expression (p < 0.05), further establishing that changes in VEGF-A expression are influenced by miR-206. Of the myogenic genes examined, MyoD was significantly upregulated, only after 24 h rest (p < 0.05). Preconditioned or control myoblasts were implanted with Matrigel™ into isolated bilateral tissue engineering chambers incorporating a flow-through epigastric vascular pedicle in severe combined immunodeficiency mice and the chamber tissue harvested 14 days later. Chambers implanted with preconditioned myoblasts had a significantly increased percentage volume of blood vessels (p = 0.0325) compared with chambers implanted with control myoblasts. Hypoxic preconditioned myoblasts promote vascularization of constructs via VEGF upregulation and downregulation of angiopoietin-1, miR-1 and miR-206. The relatively simple strategy of hypoxic preconditioning of implanted cells - including non-stem cell types - has broad, future applications in tissue engineering of skeletal muscle and other tissues, as a technique to significantly increase implant site angiogenesis.
  • Item
  • Item
    Thumbnail Image
    Surface-bound collagen 4 is significantly more stable than collagen 1
    Stynes, GD ; Kiroff, GK ; Page, RS ; Morrison, WA ; Kirkland, MA (WILEY, 2017-05)
  • Item
    Thumbnail Image
    Collagen immunoassay as a method to optimise surface functionalisation
    Stynes, G ; Kiroff, G ; Morrison, W ; Kirkland, M (WILEY-V C H VERLAG GMBH, 2017-09)
    Traditional methods of assessing surface functionalisation, including spectroscopy and chemical labelling, often involve significant error and conjecture about bonds. Proteins that improve cell attachment have specific pKa's and optimum binding requirements that may differ from the conditions required for chemical labelling. The utility of collagen ELISA to optimise acetaldehyde glow discharge polymerisation reactor parameters was tested. Accurate stepwise increases in collagen conjugation strength were demonstrated by incubating specimens in 8 M urea for 5–8 days followed by ELISA to test for residual surface collagen. Surface modifications also were assessed by XPS. The results indicated that ELISA after bond‐stressing with urea may suffice for optimising surface functionalisation and that traditional methods of analysis may be superfluous if protein conjugation is the aim of functionalisation.
  • Item
    Thumbnail Image
    Hair transplantation in mice: Challenges and solutions
    Asgari, AZ ; Rufaut, NW ; Morrison, WA ; Dilley, RJ ; Knudsen, R ; Jones, LN ; Sinclair, RD (WILEY-BLACKWELL, 2016-07)
    Hair follicle cells contribute to wound healing, skin circulation, and skin diseases including skin cancer, and hair transplantation is a useful technique to study the participation of hair follicle cells in skin homeostasis and wound healing. Although hair follicle transplantation is a well-established human hair-restoration procedure, follicular transplantation techniques in animals have a number of shortcomings and have not been well described or optimized. To facilitate the study of follicular stem and progenitor cells and their interaction with surrounding skin, we have established a new murine transplantation model, similar to follicular unit transplantation in humans. Vibrissae from GFP transgenic mice were harvested, flip-side microdissected, and implanted individually into needle hole incisions in the back skin of immune-deficient nude mice. Grafts were evaluated histologically and the growth of transplanted vibrissae was observed. Transplanted follicles cycled spontaneously and newly formed hair shafts emerged from the skin after 2 weeks. Ninety percent of grafted vibrissae produced a hair shaft at 6 weeks. After pluck-induced follicle cycling, growth rates were equivalent to ungrafted vibrissae. Transplanted vibrissae with GFP-positive cells were easily identified in histological sections. We established a follicular vibrissa transplantation method that recapitulates human follicular unit transplantation. This method has several advantages over current protocols for animal hair transplantation. The method requires no suturing and minimizes the damage to donor follicles and recipient skin. Vibrissae are easier to microdissect and transplant than pelage follicles and, once transplanted, are readily distinguished from host pelage hair. This facilitates measurement of hair growth. Flip-side hair follicle microdissection precisely separates donor follicular tissue from interfollicular tissue and donor cells remain confined to hair follicles. This makes it possible to differentiate migration of hair follicle cells from interfollicular epidermis in lineage tracing wound experiments using genetically labeled donor follicles.
  • Item
    Thumbnail Image
    Toward a skin-material interface with vacuum-integrated capped macroporous scaffolds
    Stynes, GD ; Kiroff, GK ; Morrison, WA ; Page, RS ; Kirkland, MA (WILEY, 2017-07)
  • Item
    Thumbnail Image
    Vascular Pedicle and Microchannels: Simple Methods Toward Effective In Vivo Vascularization of 3D Scaffolds
    Rnjak-Kovacina, J ; Gerrand, Y-W ; Wray, LS ; Tan, B ; Joukhdar, H ; Kaplan, DL ; Morrison, WA ; Mitchell, GM (WILEY, 2019-11-12)
    Poor vascularization remains a key limiting factor in translating advances in tissue engineering to clinical applications. Vascular pedicles (large arteries and veins) isolated in plastic chambers are known to sprout an extensive capillary network. This study examined the effect vascular pedicles and scaffold architecture have on vascularization and tissue integration of implanted silk scaffolds. Porous silk scaffolds with or without microchannels are manufactured to support implantation of a central vascular pedicle, without a chamber, implanted in the groin of Sprague Dawley rats, and assessed morphologically and morphometrically at 2 and 6 weeks. At both time points, blood vessels, connective tissue, and an inflammatory response infiltrate all scaffold pores externally, and centrally when a vascular pedicle is implanted. At week 2, vascular pedicles significantly increase the degree of scaffold tissue infiltration, and both the pedicle and the scaffold microchannels significantly increase vascular volume and vascular density. Interestingly, microchannels contribute to increased scaffold vascularity without affecting overall tissue infiltration, suggesting a direct effect of biomaterial architecture on vascularization. The inclusion of pedicles and microchannels are simple and effective proangiogenic techniques for engineering thick tissue constructs as both increase the speed of construct vascularization in the early weeks post in vivo implantation.
  • Item
    Thumbnail Image
    A novel microsurgical rodent model for the transplantation of engineered cardiac muscle flap
    Tee, R ; Morrison, WA ; Dilley, RJ (WILEY, 2018-07)
    BACKGROUND: The survival of engineered cardiac muscle 'grafts' to the epicardium is limited by vascularization post-transplantation in rat models. In this article, we describe the methodology of a novel rat model that allows for the transplantation of an engineered cardiac muscle flap (ECMF) onto the epicardium. MATERIALS AND METHODS: A total of 40 rats were used. Twenty-four neonatal rats were used to harvest cardiomyocytes. At week 1, ECMF were generated by seeding cardiomyocytes into the arteriovenous loop (AVL) tissue engineering chamber implanted into the right groin of adult rats (n = 8). At week 6, the ECMF were harvested based on a pedicle along the femoral-iliac-abdominal vessel and anastomosed to the neck vessels of the recipient syngeneic adult rats (n = 8). The flaps were delivered into the thoracic cavity and onto the epicardium. The transplanted flaps were harvested at week 10. Survival of the flaps was assessed by the patency of anastomoses and viability of the cardiomyocytes through histological analysis (hematoxylin and eosin [H&E], desmin, and von Willebrand factor [vWF] immunostaining). RESULTS: Six out of 8 rats survived the transplantation procedure. These remaining 6 recipient rats survived until harvest time point at 4 weeks post-transplantation. The mean area of the flap was 46.7mm2 . Six out of 6 flaps harvested at week 10 showed viable cardiomyocytes using desmin immunostaining and vascular channels were seen at the interface between flap and epicardium. CONCLUSION: This is a technically feasible model that will be useful for future assessment of different cardiac stem cell implants and their functional significance in rat heart models.
  • Item
    No Preview Available
    Dermal Matrices and Bioengineered Skin Substitutes: A Critical Review of Current Options
    Debels, H ; Hamdi, M ; Abberton, K ; Morrison, W (LIPPINCOTT WILLIAMS & WILKINS, 2015-01)
    BACKGROUND: Over recent decades, scientists and surgeons have collaborated to develop various bioengineered and synthetic products as an alternative to skin grafts. Despite the numerous articles and reviews written about dermal skin substitutes, there is no general consensus. METHODS: This article reviews dermal skin scaffolds used in clinical applications and experimental settings. For scaffold evaluation, we focused on clinical and/or histological results, and conclusions are listed. Explanations for general trends were sought based on existing knowledge about tissue engineering principles and wound healing mechanisms. RESULTS: Decellularized dermis seems to remain the best option with no other acellular scaffold being clinically proven to gain better results yet. In general, chemically cross-linked products were seen to be less effective in skin tissue engineering. Biocompatibility could be enhanced by preseeding substitutes with fibroblasts to allow some natural scaffold remodeling before product application. CONCLUSIONS: Skin substitutes are a useful tool in plastic and reconstructive surgery practices as an alternative to skin grafts. In the choice of substitute, the general plastic surgery principle of replacing like tissue with like tissue seems to be still standing, and products most resembling the natural dermal extracellular matrix should be preferred.
  • Item
    No Preview Available
    Differentiation of human adipose-derived stem cells into beating cardiomyocytes
    Choi, YS ; Dusting, GJ ; Stubbs, S ; Arunothayaraj, S ; Han, XL ; Collas, P ; Morrison, WA ; Dilley, RJ (WILEY, 2010-04)
    Human adipose-derived stem cells (ASCs) may differentiate into cardiomyocytes and this provides a source of donor cells for tissue engineering. In this study, we evaluated cardiomyogenic differentiation protocols using a DNA demethylating agent 5-azacytidine (5-aza), a modified cardiomyogenic medium (MCM), a histone deacetylase inhibitor trichostatin A (TSA) and co-culture with neonatal rat cardiomyocytes. 5-aza treatment reduced both cardiac actin and TropT mRNA expression. Incubation in MCM only slightly increased gene expression (1.5- to 1.9-fold) and the number of cells co-expressing nkx2.5/sarcomeric alpha-actin (27.2% versus 0.2% in control). TSA treatment increased cardiac actin mRNA expression 11-fold after 1 week, which could be sustained for 2 weeks by culturing cells in cardiomyocyte culture medium. TSA-treated cells also stained positively for cardiac myosin heavy chain, alpha-actin, TropI and connexin43; however, none of these treatments produced beating cells. ASCs in non-contact co-culture showed no cardiac differentiation; however, ASCs co-cultured in direct contact co-culture exhibited a time-dependent increase in cardiac actin mRNA expression (up to 33-fold) between days 3 and 14. Immunocytochemistry revealed co-expression of GATA4 and Nkx2.5, alpha-actin, TropI and cardiac myosin heavy chain in CM-DiI labelled ASCs. Most importantly, many of these cells showed spontaneous contractions accompanied by calcium transients in culture. Human ASC (hASC) showed synchronous Ca(2+) transient and contraction synchronous with surrounding rat cardiomyocytes (106 beats/min.). Gap junctions also formed between them as observed by dye transfer. In conclusion, cell-to-cell interaction was identified as a key inducer for cardiomyogenic differentiation of hASCs. This method was optimized by co-culture with contracting cardiomyocytes and provides a potential cardiac differentiation system to progress applications for cardiac cell therapy or tissue engineering.