Surgery (St Vincent's) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    No Preview Available
    SMAD4 as a potential gatekeeper for genomic instability and mTOR-mediated tumorigenesis in esophageal adenocarcinoma.
    Milne, JV ; Gotovac, JR ; Fujihara, KM ; Duong, CP ; Phillips, WA ; Clemons, NJ (AMER ASSOC CANCER RESEARCH, 2021-07)
    Abstract Esophageal cancer is the 8th most common cancer worldwide and has the 6th highest mortality rate of all cancers. The 5-year survival rate following esophageal adenocarcinoma (EAC) diagnosis is dismal at less than 15 percent, indicating a dire need for improved therapeutic strategies and early detection. EAC develops stepwise following exposure to chronic gastric reflux: From pre-malignant Barrett's metaplasia, through stages of low- and high-grade dysplasia until developing into invasive cancer. Mutation or loss of common tumor suppressor genes TP53 and SMAD4 act as markers for cancer progression, occurring in high-grade dysplastic tissue and invasive EAC, respectively. Our novel in vivo tumorigenesis model demonstrates progression of Barrett's metaplasia to EAC, in which SMAD4-deficient Barrett's metaplasia cells form tumors in immunodeficient mice after a period of latency and in a dose-dependent manner. This delayed tumor growth onset suggests further drivers are required for oncogenesis, and these SMAD4-deficient cells and tumors display a greater degree of genomic instability than wildtype-SMAD4 controls. A genome-wide CRISPR-Cas9 knockout screen unveiled a synthetic lethal relationship between SMAD4-deficiency and cell cycle checkpoint inhibition, suggesting a role for SMAD4 in maintaining genomic stability and a potential novel therapeutic avenue for SMAD4-deficient EAC. Additionally, a concurrent in vivo CRISPR-Cas9 tumorigenesis screen produced tumors 4-fold faster than the previous model and identified regulators of mTOR signaling as co-operative drivers of tumorigenesis in EAC. Wildtype-SMAD4 cells failed to generate tumors despite undergoing the same genetic perturbations, indicating a potential gatekeeping effect of SMAD4 in mTOR-mediated EAC tumorigenesis. In sum, loss of SMAD4 acts as a double-edged sword, increasing genomic instability and thereby rendering EAC cells sensitive to cell cycle checkpoint inhibition, whilst simultaneously co-operating with modulated mTOR signaling to promote tumorigenesis in EAC xenograft models. Citation Format: Julia V. Milne, Jovana R. Gotovac, Kenji M. Fujihara, Cuong P. Duong, Wayne A. Phillips, Nicholas J. Clemons. SMAD4 as a potential gatekeeper for genomic instability and mTOR-mediated tumorigenesis in esophageal adenocarcinoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 2671.