Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 18
  • Item
    Thumbnail Image
    Speech perception in implanted children: influence of preoperative residual hearing on outcomes [Abstract]
    Cowan, R. S. C. ; Barker, E. J. ; Pegg, P. ; Dettman, S. ; Rennie, M. ; Galvin, K. ; Meskin, T. ; Rance, G. ; Cody, K. ; Sarant, J. ; Larratt, M. ; Latus, K. ; HOLLOW, RODNEY ; Rehn, C. ; Dowell, R. C. ; Pyman, B. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1998)
    Since the first child was implanted with the Nucleus 22-channel prosthesis in Melbourne in 1985, several thousand children world-wide have now benefitted from this technology. More effective paediatric assessment and management procedures have now been developed, allowing cochlear implants to be offered to children under the age of 2 years. Improvements in speech processing strategy have also been implemented in the Nucleus implant system, resulting in increased mean speech perception benefits for implanted adults. Although a range of performance on formal measures of hearing, speech or language has been reported for children using implants, results from the first decade of implant experience consistently show that significant benefits are available to children receiving their implant at an early age. Reported speech perception results for implanted children show that a considerable proportion (60%) of paediatric patients in the Melbourne and Sydney clinics are able to understand some open-set speech using electrical stimulation alone. These results, and the upward trend of mean speech perception benefits shown for postlinguistically deafened adults have raised questions as to whether severely, or severely-to-profoundly deaf children currently using hearing aids would in fact benefit more from a cochlear implant. To investigate the potential influence of the degree of preoperative residual hearing on postoperative speech perception, results for all implanted children in the Melbourne and Sydney cochlear implant programs were analysed. Results showed that as a group, children with higher levels of preoperative residual hearing were consistently more likely to achieve open-set speech perception benefits. Potential factors in this finding could be higher levels of ganglion cell survival or greater patterning of the auditory pathways using conventional hearing aids prior to implantation. Conversely, children with the least preoperative residual hearing were less predictable, with some children achieving open-set perception, and others showing more limited closed-set benefits to perception. For these children, it is likely that preoperative residual hearing is of less significance than other factors in outcomes.
  • Item
    Thumbnail Image
    A clinical report on receptive vocabulary skills in cochlear implant users
    Dawson, P. W. ; Blamey, P. J. ; Dettman, S. J. ; Barker, E. J. ; Clark, Graeme M. ( 1995)
    Objective: The aim was to measure the rate of vocabulary acquisition for cochlear implant users and compare the pre- and postoperative rates with published data for other groups with normal or impaired hearing. The hypothesis was that the postoperative rate would be greater than the preoperative rate. Design: The Peabody Picture Vocabulary Test (PPVT) was administered to 32 children, adolescents, and prelinguistically deafened adults implanted with the 22-electrode cochlear implant. Age at implantation ranged from 2 y r 6 mo to 20 yr and implant use ranged from 6 mo to 7 yr 8 mo. Results: The group mean postoperative performance at various postoperative intervals was significantly higher than mean preoperative performance. Single-subject data indicated statistically significant gains over time on this test for 13 of the subjects. The mean postoperative rate of vocabulary acquisition of 1.06 times the rate for normally hearing children was significantly greater than the mean preoperative rate of 0.43. Conclusions: These rates of improvement were in accord with previous reports on smaller numbers of implant users, but could not be attributed unambiguously to use of the implant because no control group was used for this clinical work. Variables such as age at implantation, duration of profound deafness, communication mode, and speech perception skill failed to significantly predict rate of improvement on the PPVT.
  • Item
    Thumbnail Image
    A clinical report on speech production of cochlear implant users
    Dawson, P. W. ; Blamey, P. J. ; Dettman, S. J. ; Rowland, L. C. ; Barker, E. J. ; Tobey, E. A. ; Busby, P. A. ; Cowan, R. C. ( 1995)
    Objective: The aim was to assess articulation and speech intelligibility over time in a group of cochlear implant users implanted at 8 yr or over. The hypothesis was that the postoperative speech production performance would be greater than the preoperative performance. Design: A test of intelligibility using sentences and an articulation test measuring non-imitative elicited speech were administered to 11 and 10 subjects, respectively, who were implanted with the 22-electrode cochlear implant. Nine subjects received both tests. Age at implantation ranged from 8 yr to 20 yr and implant use ranged from 1 yr to 4 yr 5 mo. Results: For both the intelligibility and articulation tests roughly half of the subjects showed significant improvements over time and group mean postoperative performance significantly exceeded preoperative performance. Improvements occurred for front, middle, and back consonants; for stops, fricatives, and glides and for voiceless and voiced consonants. Conclusions: Despite being deprived of acoustic speech information for many childhood years, roughly half of the patients assessed showed significant gains in speech intelligibility and articulation postimplantation. The lack of a control group of non-implanted patients means that we cannot separate out the influence of the implant on speech production from other influences such as training and tactile-kinaesthetic feedback.
  • Item
    Thumbnail Image
    Speech perception for children with different levels of residual hearing using the cochlear 22-channel cochlear prosthesis [Abstract[
    Cowan, R. S. C. ; Galvin, K. L. ; Barker, E. J. ; Del Dot, J. ; Sarant, J. Z. ; Dettman, S. ; Hollow, R. ; Herridge, S. ; Rance, G. ; Larratt, M. ; Skok, M. ; Dowell, R. C. ; Pyman, B. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1996)
    Over the past 10 years, since the implantation of the first children with the Nucleus 22-channel cochlear prosthesis in Melbourne, the number of profoundly deaf children using this implant system has rapidly expanded. Longer-term experience with implanted children has led to improvements in paediatric assessment and management. Speech processing strategies have also been improved, resulting in a series of increases in speech perception benefits. Results of comparative studies of Speak and Multipeak speech processing strategies have shown that open-set word and sentence scores for a group of thirteen children evaluated over a two year period showed an advantage with the Speak speech processing strategy. The increases were noted particularly in speech perception in poor signal-to-noise conditions. Analysis has shown that consonant perception was significantly increased, due to an improved place perception. Given current speech perception scores for implanted children, it has been suggested that severely-to-profoundly deaf children currently using hearing aids could in fact benefit more from a cochlear implant. Preliminary investigation of results for children in the Melbourne and Sydney cochlear implant programs has shown that children with higher levels of preoperative residual hearing as a group do score significantly on open-set word and sentence perception tests using the implant alone. In children with lower levels of residual hearing, results were variable across the group.
  • Item
    Thumbnail Image
    The progress of children using the multichannel cochlear implant in Melbourne
    Cowan, R. S. C. ; Dowell, R. C. ; Hollow, R. ; Dettman, S. J. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Galvin, K. L. ; Webb, R. C. ; Pyman, B. C. ; Cousins, V. C. ; Clark, Graeme M. ( 1995)
    Multi-channel cochlear implantation in children began in Australia in 1985 and there are now close to 4000 profoundly deaf children and adolescents using the Australian implant system around the world. The aim of the implant procedure is to provide adequate hearing for speech and language development through auditory input. This contrasts with the situation for adults with acquired deafness where the cochlear implant aims to restore hearing for someone with well-developed auditory processing and language skills. As with adults, results vary over a wide range for children using the Multi-channel implant. Many factors have been suggested that may contribute to differences in speech perception for implanted children. In an attempt to better understand these factors, the speech perception results for children implanted in Melbourne were reviewed and subjected to statistical analysis. This has indicated that the amount of experience with the implant and the length of sensory deprivation are strongly correlated with perceptual results. This means that younger children are likely to perform better with an implant and that a number of years of experience are required for children to reach their full potential. The results have also indicated that educational placement and management play a crucial role in children reaching their potential. Overall, 60% of the children and adolescents in the study have reached a level of open-set speech understanding using the cochlear implant without lipreading.
  • Item
    Thumbnail Image
    Vowel imitation task: results over time for 28 cochlear implant children under the age of eight years
    Dettman, S. J. ; Barker, E. J. ; Dowell, R. C. ; Dawson, P. W. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    With increasing numbers of implanted children under the age of 4 years, numerous researchers have reminded us of the need for valid, sensitive, and reliable tests of developing speech perception.1,2 In addition to studies of the efficacy of implanted prostheses, there is a need to investigate the many variables that influence children's communicative performance, such as changes in speech-coding strategy, updated speech-processing systems, the effects of various training regimens, and the selection of educational and communication modes.
  • Item
    Thumbnail Image
    Habilitation issues in the management of children using the cochlear multiple-channel cochlear prosthesis
    Cowan, Robert S. C. ; Barker, Elizabeth J. ; Dettman, Shani J. ; Blamey, Peter J. ; RANCE, GARY ; Sarant, Julia Z. ; Galvin, Karyn L. ; Dawson, Pam W. ; Hollow, Rod ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. (Wien, 1994)
    Since 1985, a significant proportion of patients seen in the Melbourne cochlear implant clinic have been children. The children represent a diverse population, with both congenital and acquired hearing-impairments, a wide-range of hearing levels pre-implant, and an age range from 2 years to 18 years. The habilitation programme developed for the overall group must be flexible enough to be tailored to the individual needs of each child, and to adapt to the changing needs of children as they progress. Long-term data shows that children are continuing to show improvements after 5-7 years of device use, particularly in their perception of open-set words and sentences. Habilitation programs must therefore be geared to the long-term needs of children and their families. Both speech perception and speech production need to be addressed in the specific content of the habilitation program for any individual child. In addition, for young children, the benefits of improved speech perception should have an impact on development of speech and language, and the focus of the programme for this age child will reflect this difference in emphasis. Specific materials and approaches will vary for very young children, school-age and teenage children. In addition, educational setting will have a bearing on the integration of listening and device use into the classroom environment.
  • Item
    Thumbnail Image
    Preliminary speech perception results for children with the 22-electrode Melbourne/ cochlear hearing prosthesis
    Cowan, R. S. C. ; Dowell, R. C. ; Pyman, B. C. ; Dettman, S. J. ; Dawson, P. W. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Clark, Graeme M. ( 1993)
    The 22-electroce cochlear prosthesis developed by the University of Melbourne and Cochlear Pty. Ltd. has been shown to provide significant speech perception benefits to profoundly deafened adults. More recently, use of an improved Multipeak encoding strategy has significantly improved speech perception performance both in quiet and in noise. Benefits to speech perception in children have not as yet been fully documented, in part due to the shorter history of implant use in children and the smaller overall number of children implanted as compared with adults. The first implantation of the 22-electrode cochlear prosthesis in a child was carried out in Melbourne in January of 1985. In Melbourne, a 5-year-old child was operated on in April 1986, and a first congenitally deaf child in April 1987. The age of implantation has been progressively reduced, with the first 2-year-old child implanted in Melbourne in 1990. As at January 1992, approximately 1,200 children (under 18 years of age inclusive) have been implanted worldwide with the 22-electrode cochlear prosthesis. Of this number, approximately 50% are under the age of 6 years. The age of the child, aetiology of the hearing loss, age at onset and duration of the hearing loss, education program attended both prior to and subsequent to implantation, and parental motivation to assist in habilitation are all factors which may affect an individual child's development and progress with the device. Evaluation of performance in children is complicated by a number of issues, including the effects of delayed speech and language development, and the ability of individual children to perform auditory tests. The measure of performance chosen for any evaluation will also reflect the interests of the particular clinician. For example, effects of device use on speech production may be of interest to the speech therapist, whereas educational progress will be of primary importance to the teacher of an implanted child. However, in choosing an appropriate evaluation test to measure progress woth the cochlear prosthesis, it is vital to realize that all measures such as effects of device use on speech production, educational progress, development of language, and effects on social and communication skills depend on the child being able to accurately perceive speech information through her/his device.
  • Item
    Thumbnail Image
    Performance benefits and costs for children using cochlear implants and hearing aids [Abstract]
    Barker, Elizabeth ; Wright, Maree ; Godwin, Genevieve ; Hollow, Rod ; Rehn, Chris ; Gibson, William P.R. ; Clark, Graeme M. ; Cowan, Robert S. C. ; Dowell, Richard C. ; King, Alison ; Rennie, Maree ; Dettman, Shani J. ; Everingham, Colleen ( 1998)
    The value of cochlear implants as an established clinical option for profoundly hearing impaired adults and children has been supported by significant research results over a number of years which has clearly established the benefits available (U.S. National Institutes of Health Consensus Statement 1995). Benefit has traditionally been considered as the direct impact of the cochlear implant procedure on speech perception, or in the case of children, on the use of that auditory information to develop understandable speech and to acquire a knowledge of language. As a consequence of continuing research to improve hardware and speech processing strategies, mean scores on open-set tests of monosyllables or sentence materials for implanted adults using the cochlear implant alone without lipreading have continued to show an upwards trend. In response to the increased mean scores in quiet, perception tests in background noise are now being used as a more accurate direct measure of the potential benefits of cochlear implants to severely-to-profoundly hearing-impaired candidates. Consideration should also be given to indirect benefits, such as reduction in the stress of listening and lipreading, improved performance at work, enhanced opportunity to maintain speech, or in children to develop speech which is understandable to the general community, and the social effects of reducing the isolating effects of profound deafness. Measurement of indirect benefit can be combined with an analysis of the costs of the procedure, enabling evaluation of the implant procedure from a cost-utility standpoint, and a comparison of outcomes using other technologies such as hearing aids. This study will present data on direct and indirect benefits for hearing-impaired children using Nucleus cochlear implant systems, and compare this data with benefits shown for similarly hearing impaired children using hearing aids. The significance of these results to cost-effective delivery of services will be discussed.
  • Item
    Thumbnail Image
    Results of multichannel cochlear implantation in very young children [Abstract]
    Galvin, K. ; Clark, Graeme M. ; DETTMAN, SHANI ; Dowell, Richard C. ; Barker, E. J. ; Rance, G. ; Hollow, R. ; Cowan, R. ( 1995)
    Most researchers and clinicians working in the cochlear implant field have assumed that profoundly deaf children will have a better prognosis in terms of speech perception, speech production and language development, implanted at as young an age as possible. However, it has been difficult to gather direct evidence for this hypothesis due to the problems in assessing children under the age of five years with formal tests.