Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    Results in children using the 22 electrode cochlear implant [Abstract]
    Dawson, Pam W. ; Blamey, Peter J. ; Clark, Graeme M. ; Busby, P. A. ; Rowland, L.C. ; Dettman, S. J. ; Brown, A. M. ; Dowell, Richard C. ; Rickards, Field W. ; Alcantara, Joseph I. ( 1989)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    The University of Melbourne/Nucleus cochlear prosthesis
    Clark, Graeme M. ; Blamey, P. J. ; Brown, A. M. ; Busby, P. A. ; Dowell, R. C. ; Franz, B. K-H. ; Millar, J. B. ; Pyman, B. C. ; Shepherd, R. K. ; Tong, Y. C. ; Webb, R. L. ; Brimacombe, J. A. ; Hirshorn, M. S. ; Kuzma, J. ; Mecklenburg, D. J. ; Money, D. K. ; Patrick, J. F. ; Seligman, P. M. ( 1988)
    This is a review of research to develop the University of Melbourne/Nucleus cochlear prosthesis for patients with a profound-total hearing loss. A more complete review can be obtained in Clark et al. A prototype receiver-stimulator and multiple-electrode array developed at the University of Melbourne was first implanted in a postlingually deaf adult patient with a profound-total hearing loss on 1 August 1978. A speech processing strategy which could help this patient understand running speech, especially when combined with lipreading was developed in 1978 following initial psychophysical studies. A prototype wearable speech processor was fabricated in 1979, that could provide significant help for the first two patients in understanding running speech when used in combination with lipreading compared with lipreading alone, and it also enabled them to understand some running speech when using electrical stimulation alone. An implantable receiver-stimulator and wearable speech processor embodying the principles of the prototype devices were then produced for clinical trial by the Australian biomedical firm, Nucleus Ltd, and its subsidiaries, Cochlear Pty Ltd and Cochlear Corporation. This cochlear implant was initially clinically trialled on six patients at The Royal Victorian Eye & Ear Hospital in 1982, and shown to give similar results to those obtained with the prototype device. In view of these findings a clinical trial was carried out for a Premarket Approval Application to the US Food and Drug Administration (FDA), and extended to a number of centres in the US, Canada, and West Germany. This clinical trial confirmed that patients could understand running speech when electrical stimulation was combined with lipreading, and that some patients could also understand running speech when using electrical stimulation alone. Today, more than 600 patients world-wide are using cochlear implants developed from the research described in this paper.
  • Item
    Thumbnail Image
    Educational assessment and management of children with multichannel cochlear implants
    Nienhuys, T. G. ; Musgrave, G. N. ; Busby, P. A. ; Blamey, P. J. ; Nott, P. ; Tong, Y. C. ; Dowell, R. C. ; Brown, L. F. ; Clark, Graeme M. ( 1987)
    This paper describes the assessment and training program to evaluate speech, language, and communication skills of profoundly deaf children during and after training. Two sensory aids/prostheses are used: hearing aids and the Nucleus multichannel cochlear implant. Using a single-subject time-series experimental design, children's speech, language, and communication skills are assessed. For speech skills, assessment includes formal tests of articulation and intelligibility, syllable stress and process analyses, analyses of suprasegmental features, and voice quality. For general communication abilities, conversational skills with different speakers, story production skills, comprehension and expression of procedural information, discourse skills, and a measure of conversational interaction skills (pragmatics) are analyzed at regular intervals. Regular observations also sample the subjects' mode and frequency of interactions with individuals and groups in the school and home setting. Normative tests and formal analyses of language samples are also used to assess the overall language age of the child, vocabulary size, and kinds of expressive and receptive, syntactic, and semantic ability.
  • Item
    Thumbnail Image
    Preliminary results for the Cochlear Corporation multielectrode intracochlear implant in six prelingually deaf patients
    Clark, Graeme M. ; Busby, Peter A. ; Roberts, Susan A. ; Dowell, Richard C. ; Blamey, Peter J. ; Mecklenburg, Dianne J. ; Webb, Robert L. ; Pyman, Brian C. ; Franz, Burkhard K. ( 1987)
    The preliminary results from this study indicate that some prelingually deaf patients may get worthwhile help from a multiple-electrode cochlear implant that uses a formant-based speech processing strategy. It is encouraging that these improvements can occur in young adults and teenagers. The results for two children are also encouraging. A 10-year-old child obtained significant improvement on some speech perception tests. It was easy to set thresholds and comfortable listening levels on a 5-year-old child, and he is now a regular user of the device. There are, however, considerable variations in performance among the prelingual patients, which may be related to the following factors: whether they have had some hearing after birth, the method of education used, the motivation of the patient, and age at implantation.
  • Item
    Thumbnail Image
    A multiple-electrode intracochlear implant for children
    Clark, Graeme M. ; Blamey, Peter J. ; Busby, Peter A. ; Dowell, Richard C. ; Franz, Burkhard K-H. ; Musgrave, Gaye Nicholls ; Nienhuys, Terry G. ; Pyman, Brian C. ; Roberts, Susan A. ; Tong, Yit C. ; Webb, Robert L. ; Kuzma, Januz A. ; Money, David K. ; Patrick, James F. ; Seligman, Peter M. ( 1987)
    A multiple-electrode intracochlear implant that provides 21 stimulus channels has been designed for use in young children. It is smaller than the adult version and has magnets to facilitate the attachment of the headset. It has been implanted in two children aged 5 and 10 years. The two children both lost hearing in their third year, when they were still learning language. Following implantation, it was possible to determine threshold and comfortable listening levels for each electrode pair. This was facilitated in the younger child by prior training in scaling visual and electrotactile stimuli. Both children are regular users of the implant, and a training and assessment program has been commenced.
  • Item
    Thumbnail Image
    A clinical protocol for multiple electrode cochlear implants in children [Abstract]
    Dowell, R. C. ; Busby, P.A. ; Roberts, S. A. ; Clark, Graeme M. ; Nienhuys, T. G. ; Blamey, P. J. ; Tong, Y. C. ( 1986)
    A clinical protocol for an experimental study to evaluate the speech perception and production, and communication skills using the multiple electrode cochlear implant in pre-adolescent children has been developed. A single-subject time-series design has been adopted to regularly assess these abilities. During the pre-operative stage the subject's current hearing aids or tactile device are used, and for the post-operative stage the Nucleus multiple electrode intracochlear implant. Training is provided in both stages of the study. Also included in the pre-operative stage are the audiological and medical evaluations to determine whether the subject meets the selection criteria. Speech perception and production, and communication skills are assessed from a large selection of language and developmental-age appropriate materials. Psychophysical studies are also undertaken to measure the subject's abilities to discriminate simple stimuli differing in electrical parameter values.
  • Item
    Thumbnail Image
    Psychophysical studies for two multiple-channel cochlear implant patients
    Tong, Y. C. ; Clark, Graeme M. ; Blamey, P. J. ; Busby, P. A. ; Dowell, R. C. ( 1982)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Speech perception, production and language results in a group of children using the 22-electrode cochlear implant
    Busby, P. A. ; Brown, A. M. ; DOWELL, RICHARD ; Rickards, Field W. ; Dawson, Pam W. ; Blamey, Peter J. ; Rowland, L.C. ; Dettman, Shani J. ; Altidis, P. M. ; Clark, Graeme M. ( 1989)
    Paper presented at the 118th Meeting of the Acoustical Society of America
  • Item
    Thumbnail Image
    Results for the Nucleus multiple-electrode cochlear implant in two children [Abstract]
    Tong, Y. C. ; Blamey, P. J. ; Dowell, R. C. ; Nienhuys, T. G. ; Musgrave, G. N. ; Busby, P. A. ; Roberts, S. A. ; Rickards, F. W. ; Dettman, S. J. ; Altidis, P. M. ; Clark, Graeme M. ( 1988)
    Two males, 9 years 10 months (CHILD 1) and 5 years 5 months (CHILD 2) at time of surgery, were implanted with the Nucleus multiple-electrode cochlear implant. Both patients were deafened as a result of meningitis in their third year. Assessments of speech perception, speech production and language skills were undertaken at regular intervals, pre and post operatively. For both patients in the audition alone condition, some speech perception post operative scores were significantly higher than pre operative scores and progressive improvements in scores over successive post operative data collection times were seen. Significant differences between the visual alone and auditory-visual condition scores were also observed for CHILD 1 post operatively. Speech production post operative scores were significantly higher than pre operative scores for both patients. The receptive vocabulary scores for both patients improved at a higher rate than that of age-matched normal children. The acquisition of expressive and receptive language skills for CHILD 2 was at a higher rate than that of age-matched children. Differences in the results between the two patients were seen, and this may be related to age and duration of deafness.
  • Item
    Thumbnail Image
    Results of multiple-electrode cochlear implants in children
    Tong, Y. C. ; Blamey, P. J. ; Dowell, R. C. ; Nienhuys, T. G. ; Musgrave, G. N. ; Mecklenburg, D. J. ; Busby, P. A. ; Roberts, S. A. ; Dowell, R. C. ; Musgrave, G. N. ; Blamey, P. J. ( 1987)
    Children in Australia and United States of America are now being implanted with the Nucleus 22 electrode intracochlear prosthesis utilizing the F0/F1F2 coding strategy. A total of 32 adolescents (10-17 years) and 24 preadolescents (2-9 years) have been implanted as of 31 August, 1987. No significant postoperative complications were recorded, the speech processors were successfully programmed, and all are users of the device. For the 56 children, the average length of postoperative stimulation time is 2.8 months. Because the majority of children have such short experience with the device we report herein two children from the University of Melbourne (A) and two children from the United States (U) who have been using the Nucleus system for 12 months or more. Child 1A has only 10 electrodes in the cochlea; therefore, the number of channels programmed for the children is 10, 17, 18 and 18, respectively. Child Al and A2 were deafened by meningitis at 3-3 and 3 years of age, respectively. Child U3 became profoundly deafened from a progressive sensorineural loss at age 11 and Child U4 was deafened by recurrent cochlear hydrops at age 13 years.