Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Speech perception in children using cochlear implants: prediction of long-term outcomes.
    Dowell, RC ; Dettman, SJ ; Blamey, PJ ; Barker, EJ ; Clark, GM (Informa UK Limited, 2002-03)
    A group of 102 children using the Nucleus multichannel cochlear implant were assessed for open-set speech perception abilities at six-monthly intervals following implant surgery. The group included a wide range of ages, types of hearing loss, ages at onset of hearing loss, experience with implant use and communication modes. Multivariate analysis indicated that a shorter duration of profound hearing loss, later onset of profound hearing loss, exclusively oral/aural communication and greater experience with the implant were associated with better open-set speech perception. Developmental delay was associated with poorer speech perception and the SPEAK signal coding scheme was shown to provide better speech perception performance than previous signal processors. Results indicated that postoperative speech perception outcomes could be predicted with an accuracy that is clinically useful.
  • Item
    Thumbnail Image
    Phonetic and phonological changes in the connected speech of children using a cochlear implant
    Grogan, M. L. ; Barker, E. J. ; Dettman, S. J. ; Blamey, P. J. ( 1995)
    In excess of 5,000 children, with profound hearing impairment, have received a cochlear implant hearing device. Researchers have recently begun to study the speech production skills of these children.1-6 This topic is of interest because the speech of young prelingually or postlingually deaf children is in a constant state of development. The effectiveness of the implant, therefore, must be measured in its ability to provide enough auditory information for the child to develop intelligible speech. This is in addition to the maintenance of intelligible speech in the case of older postlingually deaf children or adults. The aim of the present study was to investigate some characteristics of the connected speech of a selected group of children from the University of Melbourne Cochlear Implant Programme. More specifically, the study aimed to determine how these characteristics changed over time. Studies of conversational speech samples are useful in that they do not depend on imitation yet they do reflect the child's everyday communication skills and are sensitive to co-articulatory effects. Analyses performed on the preoperative and postoperative data aimed to detect both the phonetic and phonologic changes in the segmental features of speech. The following questions were addressed: 1) What was the pattern of change in the phonetic inventories from before to after implantation? 2) Was there a difference in the correct production of consonants depending on their position in the word? 3) Did the group performance for correct production of phonemes change significantly from before to after implantation? 4) Did performance change over time for individuals? 5) What were the most common phonologic processes and was there a significant reduction in any of these processes from before to after implantation?
  • Item
    Thumbnail Image
    Cochlear implants in children, adolescents, and prelinguistically deafened adults: speech perception
    Dawson, Pam. W ; Blamey, Peter J. ; Rowland, Louise C. ; Dettman, Shani J. ; Clark, Graeme M. ; Busby, Peter A. ; Brown, Alison M. ; Dowell, Richard C. ; Rickards, Field W. ( 1992)
    A group of 10 children, adolescents, and prelinguistically deafened adults were implanted with the 22-electrode cochlear implant (Cochlear Pty Ltd) at the University of Melbourne Cochlear Implant Clinic and have used the prosthesis for periods from 12 to 65 months. Postoperative performance on the majority of closed-set speech perception tests was significantly greater than chance, and significantly better than preoperative performance for all of the patients. Five of the children have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores in monosyllabic words ranged from 30% to 72%; word scores in sentences ranged from 26% to 74%. Four of these 5 children were implanted during preadolescence (aged 5:5 to 10:2 years) and the fifth, who had a progressive loss, was implanted during adolescence (aged 14:8 years). The duration of profound deafness before implantation varied from 2 to 8 years. Improvements were also noted over postoperative data collection times for the younger children. The remaining 5 patients who did not demonstrate open-set recognition were implanted after a longer duration of profound deafness (aged 13:11 to 20:1 years). The results are discussed with reference to variables that may affect implant performance, such as age at onset of loss, duration of profound loss, age at implantation, and duration of implantation. They are compared with results for similar groups of children using hearing aids and cochlear implants.
  • Item
    Thumbnail Image
    Cochlear implants in children, adolescents, and prelinguistically deafened adults: speech perception
    Dawson, Pam W. ; Blamey, Peter J. ; Rowland, Louise C. ; Dettman, Shani J. ; Clark, Graeme M. ; Busby, Peter A. ; Brown, Alison M. ; Dowell, Richard C. ; Rickards, Field W. ( 1992)
    A group of 10 children, adolescents, and prelinguistically deafened adults were implanted with the 22-electrode cochlear implant (Cochlear Ply Ltd) at the University of Melbourne Cochlear Implant Clinic and have used the prosthesis for periods from 12 to 65 months. Postoperative performance on the majority of closed-set speech perception tests was significantly greater than chance, and significantly better than preoperative performance for all of the patients. Five of the children have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores in monosyllabic words ranged from 30% to 72%; word scores in sentences ranged from 26% to 74%. Four of these 5 children were implanted during preadolescence (aged 5:5 to 10:2 years) and the fifth, who had a progressive loss, was implanted during adolescence (aged 14:8 years). The duration of profound deafness before implantation varied from 2 to 8 years. Improvements were also noted over postoperative data collection times for the younger children. The remaining 5 patients who did not demonstrate open-set recognition were implanted after a longer duration of profound deafness (aged 13:11to 20:1 years). The results are discussed with reference to variables that may affect implant performance, such as age at onset of loss, duration of profound loss, age at implantation, and duration of implantation. They are compared with results for similar groups of children using hearing aids and cochlear implants.