Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Formant-based processing for hearing aids
    Blamey, P. J. ; Dooley, G. J. ; Seligman, P. M. ; Alcantara, J. I. ; Gerin, E. S. ( 1994)
    A body-worn hearing aid has been developed with the ability to estimate formant frequencies and amplitudes in real time. These parameters can be used to enhance the output signal by "sharpening" the formant peaks, by "mapping" the amplitudes of the formants onto the available dynamic range of hearing at each frequency, or by resynthesizing a speech signal that is suited to the listener�s hearing characteristics. Initial evaluations have indicated small improvements in speech perception for three groups of subjects: users of a combined cochlear implant and speech processing hearing aid, normally hearing listeners in background noise, and a hearing aid user with a severe hearing loss.
  • Item
    Thumbnail Image
    Speech processing for cochlear implants
    Tong, Y. C. ; Millar, J. B. ; Blamey, P. J. ; Clark, Graeme M. ; Dowell, R. C. ; Patrick, J. F. ; Seligman, P. M. (JAI Press Ltd, 1992)
    The cochlear implant is a hearing prosthesis designed to replace the function of the ear. The operation of the prosthesis can be described as a sequence of four functions: the processing of the acoustic signal received by a microphone; the transfer of the processed signal through the skin; the creation of neural activity in the auditory nerve; and the integration of the experience of this neural activity into the perceptual and cognitive processing of the implantee.
  • Item
    Thumbnail Image
    A "Combionic Aid": Combined speech processing for a cochlear implant in one ear and speech processing hearing aid in the other ear [Abstract]
    Dooley, Gary J. ; Blamey, Peter J. ; Seligman, Peter M. ; Clark, Graeme M. ( 1993)
    Independent use of a cochlear implant in one ear and a hearing aid in the other is not acceptable for many implant users with some residual hearing. Psychophysical evidence suggests that there are substantial interactions between acoustic and electrical signals including masking and loudness summation. These effects may contribute to the difficulty in using two independent devices and it is desirable to control the parameters of the electrical and acoustical signals far more accurately than is possible with two independent devices with separate microphones. In order to achieve this control we have developed a Combionic aid incorporating an implant and an 'in1planlcompatible' hearing aid controlled from the same speech processor. The new processor is particularly flexible and can implement a wide variety of speech processing strategies for combined acoustic and electrical stimulation. A benchtop prototype has been tested with five patients using a range of different speech tests. In general, patients do better when they use acoustic and electrical information simultaneously than they do with either alone. Some patients on some tests perform significantly better with the bimodal aid than they do with independent hearing aids and implant processors worn together. Wearable devices have now been built and evaluations of these devices are continuing.
  • Item
    Thumbnail Image
    Combined electrical and acoustical stimulation using a bimodal prosthesis
    Dooley, Gary J. ; Blamey, Peter J. ; Seligman, Peter M. ; Alcantara, Joseph I. ; Clark, Graeme M. ; Shallop, Jon K. ; Arndt, Patti ; Heller, James W. ; Menapace, Christine M. ( 1993)
    A new device incorporating a cochlear implant speech processor and a speech-processing hearing aid for the un-implanted ear has been designed and tested with four severely hearing-impaired patients. The aim of the device is to provide a more acceptable and effective combination of electrical and acoustic signals to the two ears. When used monaurally, and binaurally in conjunction with the cochlear implant, the speech-processing hearing aid mean scores for open-set sentences, words, and consonants were as good as or better than the mean scores for the patients' own conventional hearing aids. Some patients improved much more than did others. Although not conclusive, these results are encouraging, especially as they were achieved with a laboratory prototype that did not allow the patients to become accustomed to the processor in everyday situations.
  • Item
    Thumbnail Image
    Evaluation of a two-formant speech-processing strategy for a multichannel cochlear prosthesis
    Dowell, R. C. ; Seligman, P. M. ; Blamey, P. J. ; Clark, Graeme M. ( 1987)
    Initial results with the two-formant speech-processing strategy (F0FIF2) confirm the advantage of a multichannel cochlear prosthesis capable of stimulating at different sites within the cochlea. The successful presentation of two spectral components by varying the place of stimulation leads to the possibility of presenting further spectral information in this manner. Because virtually all multichannel implant patients demonstrate good "place" (electrode site) discrimination, these more refined coding strategies should lead to benefits for the majority of implantees. Already, with the F0FIF2 strategy, we have a system that appears to provide some effective auditory-alone communication ability for the average patient.
  • Item
    Thumbnail Image
    A multiple-electrode intracochlear implant for children
    Clark, Graeme M. ; Blamey, Peter J. ; Busby, Peter A. ; Dowell, Richard C. ; Franz, Burkhard K-H. ; Musgrave, Gaye Nicholls ; Nienhuys, Terry G. ; Pyman, Brian C. ; Roberts, Susan A. ; Tong, Yit C. ; Webb, Robert L. ; Kuzma, Januz A. ; Money, David K. ; Patrick, James F. ; Seligman, Peter M. ( 1987)
    A multiple-electrode intracochlear implant that provides 21 stimulus channels has been designed for use in young children. It is smaller than the adult version and has magnets to facilitate the attachment of the headset. It has been implanted in two children aged 5 and 10 years. The two children both lost hearing in their third year, when they were still learning language. Following implantation, it was possible to determine threshold and comfortable listening levels for each electrode pair. This was facilitated in the younger child by prior training in scaling visual and electrotactile stimuli. Both children are regular users of the implant, and a training and assessment program has been commenced.
  • Item
    Thumbnail Image
    Clinical comparison of open-set speech perception with MSP and WSPIII speech processors and preliminary results for the new SPEAK processor [Abstracts]
    Whitford, Lesley A. ; Partick, James F. ; Clark, Graeme M. ; Dowell, Richard C. ; Marsh, Michael A. ; HOLLOW, RODNEY ; Blamey, Peter J. ; Pyman, Brian C. ; Seligman, Peter M. ( 1993)
    There are several studies which compare the WSP III (FOIF11F2) and MSP (Multipeak) speech processors for the Nucleus multiple-channel cochlear implant in small, controlled groups of patients. In the present study we were interested in the benefits of open set speech perception provided by the MSP over the prior WSP III speech processor in a large, unselected clinical population.
  • Item
    Thumbnail Image
    Signal processing in quiet and noise
    Dowell, R. C. ; Patrick, J. F. ; Blamey, P. J. ; Seligman, P. M. ; Money, D. K. ; Clark, Graeme M. ( 1987)
    It has been shown that many profoundly deaf patients using multichannel cochlear implants are able to understand significant amounts of conversational speech using the prosthesis without the aid of lipreading. These results are usually obtained under ideal acoustic conditions but, unfortunately, the environments in which the prostheses are most often used are rarely perfect. Some form of competing signal is always present in the urban setting, from other conversations, radio and television, appliances, traffic noise and so on. As might be expected, implant users in general find background noise to be the largest detrimental factor in their understanding of speech, both with and without the aid of lipreading. Recently, some assessment of implant patient performance with competing noise has been attempted using a four-alternative forced-choice spondee test (1) at Iowa University. Similar testing has been carried out at the University of Melbourne with a group of patients using the Nucleus multichannel cochlear prosthesis. This study formed part of an assessment of a two formant (F0/FI/F2) speech coding strategy (2). Results suggested that the new scheme provided improved speech recognition both in quiet and with competing noise. This paper reports on some more detailed investigations into the effects of background noise on speech recognition for multichannel cochlear implant users.
  • Item
    Thumbnail Image
    A formant-estimating speech processor for cochlear implant patients
    Blamey, P. J. ; Dowell, R. C. ; Brown, A. M. ; Seligman, P. M. ; Clark, Graeme M. (Speech Science and Technology Conference, 1986)
    A simple formant-estimating speech processor has been developed to make use of the "hearing" produced by electrical stimulation of the auditory nerve with a multiple-channel cochlear implant. Thirteen implant patients were trained and evaluated with a processor that presented the second formant frequency, fundamental frequency, and amplitude envelope of the speech. Nine patients were trained and evaluated with a processor that presented the first formant frequency and amplitude as well. The second group performed significantly better in discrimination tasks and word and sentence recognition through hearing alone. The second group also showed a significantly greater improvement when hearing and lipreading was compared with lipreading alone in a speech tracking task.