Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Research in auditory training
    Blamey, Peter J. ; Alcantara, Joseph I. (Academy of Rehabilitative Audiology, 1994)
    Speech perception and communication can improve as a result of experience, and auditory training is one way of providing experiences that may be beneficial. One of the most important factors influencing the effectiveness of auditory training is the amount of experience the client already has. Other factors include the severity of the hearing loss, the sensory device used, the environment, personal qualities of the client and clinician, the type of training, and the type of evaluation used. Despite a long history of clinical practice, the effects of these factors have been investigated in few controlled studies. Even in special cases where training has an obvious role, such as adults using cochlear implants, there has been little objective comparison of alternative training methods. One reason for this is the difficulty of carrying out definitive experiments that measure changes in performance over time in the presence of many confounding variables. These variables may also help to explain the apparently contradictory results that can be found in the literature on auditory training and in the diverse points of view expressed by practicing clinicians. Issues and methods appropriate for research in auditory training among adult clients are discussed with reference to the needs of modem clinical practice.
  • Item
    Thumbnail Image
    A clinical report on vocabulary skills in cochlear implant users [Abstract]
    Dawson, P. ; Blamey, P. ; Dettman, S. ; Rowland, L. ; Barker, E. ; Cowan, R. ; Clark, Graeme M. ( 1994)
    Receptive vocabulary results are reported for 32 children, adolescents and prelinguistically deafened adults implanted with the 22-electrode cochlear implant at the Melbourne Cochlear Implant Clinic. Age at implantation ranged from 2 years, 6 months to 20 years and implant use ranged from 1 year to 7 years, 8 months. There were significant gains from pre- to postoperative assessments on the Peabody Picture Vocabulary Test (PPVT) for the majority of subjects. Rates of improvement found are compatible with previous reports on smaller numbers of implant users, but cannot be attributable unambiguously to use of the implant. The group postoperative performance was significantly higher than mean preoperative performance (n =25). The relationship of variables such as duration of implant use, duration of profound deafness and speech perception ability to improvement on the PPVT is discussed. Expressive vocabulary results on the Renfrew Word Finding Vocabulary Scale are reported for 11 of the subjects. Less substantial gains were made on this measure.
  • Item
    Thumbnail Image
    Issues in long-term management of children with cochlear implants and tactile devices [Abstract]
    COWAN, ROBERT ; DOWELL, RICHARD ; Barker, Elizabeth ; GALVIN, KARYN ; DETTMAN, SHANI ; SARANT, JULIA ; RANCE, GARY ; Hollow, Rod ; BLAMEY, PETER ; Clark, Graeme M. ( 1994)
    For many children with severe and profound hearing losses, conventional hearing aids are unable to provide sufficient amplification to ensure good oral communication and/or in the case of very young children, development of speech and language. Traditionally a number of these children have opted for the use of sign language alone or in Total Communication approaches as a primary means of communication. The advent of multiple channel cochlear implants for children and the continuing development of multiple channel speech processing tactile devices provide auditory approaches to resolving communication difficulties for these children. The successful use of such devices depends on a number of factors including the information provided through the aid; the ease of use, convenience and reliability of the aid; the individual communication needs of the child; and the habilitation and management program used with the device. Long-term data has shown that children continue to show increased speech perception benefits from improvements in speech processing and from further experience with these devices. Habilitation and management programs must therefore be geared to meet the changing needs of children as they progress and of families as children mature and face new challenges. Habilitation must address specific individual needs in speech perception and in speech production. For very young children, benefits of improved speech perception should have an impact on the development of speech and language, and habilitation and management must emphasise the need for language growth.
  • Item
    Thumbnail Image
    A clinical report on speech production of cochlear implant users [Abstract]
    Dawson, P. ; Blamey, P. ; Dettman, S. ; Rowland, L. ; Barker, E. ; Tobey, E. ; Busby, P. ; Cowan, R. ; Clark, Graeme M. ( 1994)
    Speech production results are reported for a group of 15 children, adolescents and prelinguistically deafened adults implanted with the 22-electrode cochlear implant. Age at implantation ranged from 5 years to 20 years and implant experience ranged from 1 year to 4 years, 7 months. On a speech intelligibility test using sentences seven implant users improved significantly over time. Mean group performance (n = 11) improved from 18% preoperatively to 43% postoperatively. Similarly on a test of articulation, eight implant users improved significantly over time and the group mean postoperative performance (n = 11) exceeded the preoperative performance (55% compared to 38%). This group effect was significant for consonants and blends but was nonsignificant for vowels. Improvements occurred for front, middle and back consonants, for stops, nasals, fricatives and glides and for voiceless and voiced consonants. Three implant users showed no significant gain on either test. The results suggest complex relationships between speech production performance and sensory information provided by a multichannel implant.
  • Item
    Thumbnail Image
    The potential benefit and cost-effectiveness of tactile devices in comparison with cochlear implants
    Blamey, Peter J. ; Cowan, Robert S.C. (Whurr, 1993)
    The use of the word 'potential' in the title of this chapter implies that the discussion must be somewhat speculative in attempting to foresee the benefits and costs of cochlear implants in the future. It is now much easier to do this than it would have been five or ten years ago, although there still remain many unanswered questions about their use, especially for hearing-impaired children. As far as possible, the assumptions and opinions expressed in this chapter are based on fact but in some cases reflect the subjective bias of the authors. (These opinions are not necessarily shared by other contributors to this book.) In particular, one author (PJB) has been involved in cochlear implant research for over ten years and began developing a tactile device in 1984 as a control device in studies of cochlear implants in children. Children and adults using this device have produced results comparable to those for some groups of cochlear implant patients. Despite these results, which exceeded initial expectations, there is still some bias in favour of the cochlear implant.
  • Item
    Thumbnail Image
    Speech perception results in children using the 22-electrode cochlear implant [Abstract]
    Dawson, P. W. ; Blamey, P. J. ; Rowland, L.C. ; Dettman, S. J. ; Altidis, P. M. ; Clark, Graeme M. ; Busby, P. A. ; Brown, A. M. ; Dowell, R. C. ; Rickards, F. W. ( 1990)
    Twenty-one profoundly hearing impaired children ranging in age from 3 to 20 years have been implanted with the 22-electrode cochlear implant (Cochlear Pty ltd) at the University of Melbourne Cochlear Implant Clinic. Five children (aged 6.0 to 14.8 years) have achieved substantial scores on open set speech tests using hearing without lipreading. Phoneme scores in monosyllabic words ranged from 30% to 72%. Word scores in sentences ranged from 26% to 74%. Four of these five children were implanted during preadolescence and the fifth who had a progressive loss, was implanted during adolescence. Eight children (aged 3.0 to 11 years), have either been implanted recently or are too young for detailed assessments. However some have shown using closed set speech perception tests or vowel imitation tasks, that they are beginning to use the auditory input provided by the implant. The remaining children (aged 13.11 to 20.1 years) have not demonstrated open set recognition but are all full time users of the device. This group was implanted during adolescence after a long duration of profound deafness. The results will be discussed with reference to a number of variables which may contribute to successful implant use; such as age of onset of deafness, duration of deafness. age of implantation, educational program and type of training.