Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Combined cochlear implant and speech processing hearing aid for implant users with a severe to profound hearing loss in the contralateral ear [Abstract]
    BLAMEY, PETER ; Parisi, Elvira ; Dooley, Gary ( 1994)
    The bimodal device was developed for cochlear implant users who simultaneously wear a hearing aid in the opposite ear having residual hearing of a severe to profound degree. The aim was to create a single device to provide both input signals in a more compatible manner and thus maximise use of the individual's total hearing capabilities. The acoustic component of the bimodal device is very flexible and can implement various speech processing strategies with speed, ease and precision. The Frequency Response Tailoring strategy utilises three filters to fit a frequency gain curve to within 1-2 dB of that desired. Modifications at discrete frequencies, ranges or slopes can be readily made. The Peak Sharpening or Spectral Enhancement strategy amplifies the formant peaks in speech for potential improvement of formant resolution and speech perception in the presence of background noise. The Resynthesis strategy presents specifically selected components of speech in selected combinations and includes the ability to transpose higher frequency information to lower frequency ranges for individuals with no aidable high frequency hearing levels. Different fits can be quickly and easily interchanged for comparison and evaluation and subsequent modifications indicated can be readily effected. Any combination of acoustic and implant speech processing strategy can be presented to optimise speech perception for the individual user.
  • Item
    Thumbnail Image
    Pitch perception for different modes of stimulation using the Cochlear multiple-electrode prosthesis
    Busby, P. A. ; Whitford, L. A. ; Blamey, P. J. ; Richardson, L. M. ; Clark, Graeme M. ( 1994)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Cochlear implants in children, adolescents, and prelinguistically deafened adults: speech perception
    Dawson, Pam W. ; Blamey, Peter J. ; Rowland, Louise C. ; Dettman, Shani J. ; Clark, Graeme M. ; Busby, Peter A. ; Brown, Alison M. ; Dowell, Richard C. ; Rickards, Field W. ( 1992)
    A group of 10 children, adolescents, and prelinguistically deafened adults were implanted with the 22-electrode cochlear implant (Cochlear Ply Ltd) at the University of Melbourne Cochlear Implant Clinic and have used the prosthesis for periods from 12 to 65 months. Postoperative performance on the majority of closed-set speech perception tests was significantly greater than chance, and significantly better than preoperative performance for all of the patients. Five of the children have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores in monosyllabic words ranged from 30% to 72%; word scores in sentences ranged from 26% to 74%. Four of these 5 children were implanted during preadolescence (aged 5:5 to 10:2 years) and the fifth, who had a progressive loss, was implanted during adolescence (aged 14:8 years). The duration of profound deafness before implantation varied from 2 to 8 years. Improvements were also noted over postoperative data collection times for the younger children. The remaining 5 patients who did not demonstrate open-set recognition were implanted after a longer duration of profound deafness (aged 13:11to 20:1 years). The results are discussed with reference to variables that may affect implant performance, such as age at onset of loss, duration of profound loss, age at implantation, and duration of implantation. They are compared with results for similar groups of children using hearing aids and cochlear implants.
  • Item
    Thumbnail Image
    Using an automatic word-tagger to analyse the spoken language of children with impaired hearing
    Blamey, P. J. ; Grogan, M. L. ; Shields, M. B. ( 1994)
    The grammatical analysis and description of spoken language of children with impaired hearing is time-consuming, but has important implications for their habilitation and educational management. Word-tagging programs have achieved high levels of accuracy with text and adult spoken language. This paper investigates the accuracy of one automatic word tagger (AUTASYS 3.0 developed for the International Corpus of English project, ICE) on a small corpus of spoken language samples from children using a cochlear implant. The accuracy of the tagging and the usefulness of the results in comparison with more conventional analyses are discussed.
  • Item
    Thumbnail Image
    Signal processing in quiet and noise
    Dowell, R. C. ; Patrick, J. F. ; Blamey, P. J. ; Seligman, P. M. ; Money, D. K. ; Clark, Graeme M. ( 1987)
    It has been shown that many profoundly deaf patients using multichannel cochlear implants are able to understand significant amounts of conversational speech using the prosthesis without the aid of lipreading. These results are usually obtained under ideal acoustic conditions but, unfortunately, the environments in which the prostheses are most often used are rarely perfect. Some form of competing signal is always present in the urban setting, from other conversations, radio and television, appliances, traffic noise and so on. As might be expected, implant users in general find background noise to be the largest detrimental factor in their understanding of speech, both with and without the aid of lipreading. Recently, some assessment of implant patient performance with competing noise has been attempted using a four-alternative forced-choice spondee test (1) at Iowa University. Similar testing has been carried out at the University of Melbourne with a group of patients using the Nucleus multichannel cochlear prosthesis. This study formed part of an assessment of a two formant (F0/FI/F2) speech coding strategy (2). Results suggested that the new scheme provided improved speech recognition both in quiet and with competing noise. This paper reports on some more detailed investigations into the effects of background noise on speech recognition for multichannel cochlear implant users.