Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Issues in long-term management of children with cochlear implants and tactile devices [Abstract]
    COWAN, ROBERT ; DOWELL, RICHARD ; Barker, Elizabeth ; GALVIN, KARYN ; DETTMAN, SHANI ; SARANT, JULIA ; RANCE, GARY ; Hollow, Rod ; BLAMEY, PETER ; Clark, Graeme M. ( 1994)
    For many children with severe and profound hearing losses, conventional hearing aids are unable to provide sufficient amplification to ensure good oral communication and/or in the case of very young children, development of speech and language. Traditionally a number of these children have opted for the use of sign language alone or in Total Communication approaches as a primary means of communication. The advent of multiple channel cochlear implants for children and the continuing development of multiple channel speech processing tactile devices provide auditory approaches to resolving communication difficulties for these children. The successful use of such devices depends on a number of factors including the information provided through the aid; the ease of use, convenience and reliability of the aid; the individual communication needs of the child; and the habilitation and management program used with the device. Long-term data has shown that children continue to show increased speech perception benefits from improvements in speech processing and from further experience with these devices. Habilitation and management programs must therefore be geared to meet the changing needs of children as they progress and of families as children mature and face new challenges. Habilitation must address specific individual needs in speech perception and in speech production. For very young children, benefits of improved speech perception should have an impact on the development of speech and language, and habilitation and management must emphasise the need for language growth.
  • Item
    Thumbnail Image
    Combined cochlear implant and speech processing hearing aid for implant users with a severe to profound hearing loss in the contralateral ear [Abstract]
    BLAMEY, PETER ; Parisi, Elvira ; Dooley, Gary ( 1994)
    The bimodal device was developed for cochlear implant users who simultaneously wear a hearing aid in the opposite ear having residual hearing of a severe to profound degree. The aim was to create a single device to provide both input signals in a more compatible manner and thus maximise use of the individual's total hearing capabilities. The acoustic component of the bimodal device is very flexible and can implement various speech processing strategies with speed, ease and precision. The Frequency Response Tailoring strategy utilises three filters to fit a frequency gain curve to within 1-2 dB of that desired. Modifications at discrete frequencies, ranges or slopes can be readily made. The Peak Sharpening or Spectral Enhancement strategy amplifies the formant peaks in speech for potential improvement of formant resolution and speech perception in the presence of background noise. The Resynthesis strategy presents specifically selected components of speech in selected combinations and includes the ability to transpose higher frequency information to lower frequency ranges for individuals with no aidable high frequency hearing levels. Different fits can be quickly and easily interchanged for comparison and evaluation and subsequent modifications indicated can be readily effected. Any combination of acoustic and implant speech processing strategy can be presented to optimise speech perception for the individual user.
  • Item
    Thumbnail Image
    Speech processing for cochlear implants
    Tong, Y. C. ; Millar, J. B. ; Blamey, P. J. ; Clark, Graeme M. ; Dowell, R. C. ; Patrick, J. F. ; Seligman, P. M. (JAI Press Ltd, 1992)
    The cochlear implant is a hearing prosthesis designed to replace the function of the ear. The operation of the prosthesis can be described as a sequence of four functions: the processing of the acoustic signal received by a microphone; the transfer of the processed signal through the skin; the creation of neural activity in the auditory nerve; and the integration of the experience of this neural activity into the perceptual and cognitive processing of the implantee.
  • Item
    Thumbnail Image
    Evaluation of a two-formant speech-processing strategy for a multichannel cochlear prosthesis
    Dowell, R. C. ; Seligman, P. M. ; Blamey, P. J. ; Clark, Graeme M. ( 1987)
    Initial results with the two-formant speech-processing strategy (F0FIF2) confirm the advantage of a multichannel cochlear prosthesis capable of stimulating at different sites within the cochlea. The successful presentation of two spectral components by varying the place of stimulation leads to the possibility of presenting further spectral information in this manner. Because virtually all multichannel implant patients demonstrate good "place" (electrode site) discrimination, these more refined coding strategies should lead to benefits for the majority of implantees. Already, with the F0FIF2 strategy, we have a system that appears to provide some effective auditory-alone communication ability for the average patient.
  • Item
    Thumbnail Image
    Improved sound processing for cochlear implants
    James, C.J. ; Just, Y. ; Knight, M.R. ; Martin, L.F.A. ; McKay, C.M. ; Plant, K.L. ; Tari, S. ; Vandali, A.E. ; Clark, Graeme M. ; Cowan, R.S.C. ; McDermott, H. J. ; Blamey, P. J. ; Dawson, P. ; Fearn, R. A. ; Grayden, D. B. ; Henshall, K. R. ( 2002)
    Four signal processing schemes currently under development aim to improve the perception of sounds/ especially speech, for children and adults using the Nucleus cochlear implant system. The schemes are (1) fast-acting input-signal compression, (2) Adaptive Dynamic Range Optimisation (ADRO), (3) TESM, a scheme that emphasises transients in signals, and (4) DRSP, a strategy that applies different stimulation rates to selected sets of electrodes.