Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    A multiple-channel cochlear implant: an evaluation using nonsense syllables
    Clark, Graeme M. ; Tong, Yit Chow ; Martin, Lois F. ; Busby, Peter A. ; Dowell, Richard C. ; Seligman, Peter M. ; Patrick, James F. ( 1981)
    A study using nonsense syllables has shown that a multiple-channel cochlear implant with speech processor is effective in providing information about, voicing and manner and to a lesser extent place distinctions. These distinctions supplement lipreading cues. Furthermore, the average percentage improvements in overall identification scores for multiple-channel electrical stimulation and lipreading compared to lipreading alone were 71% for a laboratory-based speech processor and 122 % for a wearable unit.
  • Item
    Thumbnail Image
    A multiple-channel cochlear implant: an evaluation using an open-set word test
    Clark, Graeme M. ; Tong, Y. C. ; Martin, L. F. ; Busby, P. A. ( 1981)
    Multiple-channel electrical stimulation of the hearing nerve in conjunction with speech reading has helped two post-lingually deaf patients with total hearing losses understand running speech in every day situations. This has been confirmed using open-set phonetically balanced word tests, where the patients achieved 60% and 40% scores with isolated-words and 80% and 73% for phonemes-in-isolated words. The tests also showed that the cochlear implant improved word recognition by a factor of four in one patient and two in another compared with speechreading alone. The speech processor used extracted the voicing frequency and energy and the frequency and energy of the dominant spectral peak in the mid-frequency range. The parameters for voicing determined the rate of stimulation for all electrodes, and the parameters for the dominant spectral peak in the midfrequency range determined the site of electrode stimulation and current level.
  • Item
    Thumbnail Image
    Speech processing for a multiple-channel cochlear implant
    Tong, Y. C. ; Millar, J. B. ; Clark, Graeme M. ; Martin, L. F. ; Busby, P. A. ( 1980)
    A laboratory speech processor has been developed for a multiple-channel cochlear implant prosthesis. The speech processor accepts the speech waveform as an input and produces a pattern of electrical stimulus data as output. The electrical stimulus data are transmitted to the implanted receiver-stimulator by a transmitter which is external to the speech processor. Four speech signal parameters were estimated every 20 ms in the parameter estimation section of the speech processor. These parameters included the fundamental frequency (FO), a low frequency energy measure (AO) , the second formant frequency (F2) and its amplitude (A2).
  • Item
    Thumbnail Image
    Speech processor design for a multiple-channel cochlear implant
    Tong, Y. C. ; Clark, Graeme M. ; Busby, P. A. ; Millar, J. B. ; Martin, L. F. ( 1980)
    This paper outlines the strategy adopted for a laboratory-based speech processor used to provide speech information to patients with a multiple-channel cochlear implant It also presents the results of vowel and consonant recognition studies and speech test using open sets of words and sentences.
  • Item
    Thumbnail Image
    Training and assessment of children using a multi-electrode cochlear implant [Abstract]
    Nienhuys, T. G. ; Roberts, S. A. ; Busby, P. A. ; Tong, Y. C. ; Blamey, P. J. ; Clark, Graeme M. ( 1986)
    A training and assessment protocol has been developed for a research study on deaf children using multi-electrode cochlear implants. The areas of assessment and training include speech perception and production, language and communication skills. Material which is appropriate for language-and developmental-age is selected from a large battery of: tests to ensure that the individual abilities of children are addressed. A single-subject, time-series design has been adopted for regular assessment of the child's performance. The participating child receives a minimum of six months' pre-operative training and assessment using high gain hearing aids or a tactile device. Also included are audiological and medical evaluations to determine the child's suitability for inclusion in the study. Approximately two months are allocated for pre-operative, operative and postoperative surgical management as well as fitting and setting the external speech processor. Post-operatively, the same training and assessment procedures continue for a number of years. Extensive psychophysical studies are also undertaken to measure the child's abilities to discriminate simple stimuli which differ in electrical stimulus parameter values.