Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Insertion study using new peri-modiolar electrode array designs [Abstract]
    Treaba, Claudiu ; Clark, Graeme M. ; Cowan, Robert S. ; Tykocinski, Michael J. ; Cohen, Lawrence T. ; Saunders, Elaine ; Pyman, Brian C. ; Briggs, Robert S. ; Dahm, Markus C. ( 1999)
    Intracochlear multi-channel cochlear implants have been shown to successfully provide auditory information for profoundly deaf patients by electrically stimulating discrete populations of auditory nerve fibers via a scala tympani (ST) electrode array. Histological and radiological examination of implanted human temporal bones showed that the current straight Nucleus® array is usually positioned against the outer wall of the ST. An electrode array close to the modiolus could be expected to reduce stimulation thresholds and result in a more localized neural excitation pattern.
  • Item
    Thumbnail Image
    Benefits of pre-curved electrode arrays for the Nucleus multichannel cochlear implant [Abstract]
    Pyman, B. ; Clark, Graeme M. ; Saunders, Elaine ; Cohen, Lawrence T. ; Cowan, Robert S. C. ; Treaba, C. ; Dahm, M. ; Tykocinski, M. ( 1998)
    The purpose of the study was to evaluate whether placement of an electrode closer to the modiolus would provide a more efficient interface with the auditory nerve. A pre-curved, banded 22-electrode array has been developed. Following comprehensive safety studies, the array was inserted in three adult patients. Detailed x-ray analyses have been conducted to specify the positions of the electrode bands. Psychophysical studies have been conducted, within each subject, using electrodes which lie at differing distances from the modiolus. These studies have shown that as the distance from the modiolus decreased, electrode threshold currents decreased and dynamic ranges increased. Thresholds were lower than in a comparison group of standard array users. Forward masking studies showed current spread to be more focused at the electrodes lying closer to the modiolus. Electrode discrimination was also better at electrodes closer to the modiolus. JND for loudness, expressed as a function of dynamic range also decreased in this condition. Thus, a preliminary profile of the parameters of interest, for an improved implant design, suggest that an array which lies closer to the modiolus can result in lower current requirements and a more localised pattern of neural excitation.
  • Item
    Thumbnail Image
    A new pre-curved electrode array benefits as measured by initial psychophysics [Abstract]
    Saunders, Elaine ; Cohen, Lawrence T. ; Treaba, Claudiu ; Pyman, Brian C. ; Clark, Graeme M. ( 1998)
    Theory suggests that an electrode which lies close to the modiolus should provide a more efficient interface with the auditory nerve, although it is important to ensure that stimulating fields are not so intense as to risk neural damage. A pre-curved, banded 22-electrode array has been developed which, following evaluation for ease of insertion and comprehensive safety studies, has been inserted in three patients. Detailed X-ray analyses, in which the positions of the electrode bands are specified, have been carried out. This has enabled comparative detailed, psychophysical studies to be carried out, within each subject, between electrodes which lie at differing distances from the modiolus. These studies have shown that, as the as electrode distance from the modiolus decreased, threshold currents decreased and dynamic ranges increased. Thresholds are lower than in a comparison group of subjects fitted with straight arrays which had been similarly position specified. Extensive forward masking studies have shown that current spread was more focused at the electrodes closer to the modiolus. Electrode discrimination studies were carried out and in the loudness jittered condition, which is more representative of the dynamic speech signal, discrimination was better at the electrodes closer to the modiolus. Just Noticeable Differences for loudness, expressed as a function of dynamic range, also decreased in this condition. Thus, a preliminary psychophysical profile of the parameters of interest, for an improved implant design, indicate that an array which lies closer to the modiolus can result in lower current requirements and a more localised pattern of neural excitation.
  • Item
    Thumbnail Image
    The development of a precurved cochlear implant electrode array and its preliminary psychophysical evaluation [Abstract]
    Cohen, L. T. ; Saunders, E. ; Treaba, C. ; Pyman, B. C. ; Clark, Graeme M. ( 1998)
    A precurved banded electrode array may provide a better interface with the auditory neural pathways for cochlear implants, and provide better speech perception. A prototype arrray has been further evaluated for ease of insertion, siting within the cochlea and induction of any cochlear trauma. The arrays were inserted into the human cochlear under simulated surgery. The bones were embedded in Araldite, X-rayed and sectioned. X-ray reconstruction analyses of the position of the implanted array showed its insertion to be favourable. Cochlear implants with precurved arrays have been implanted in three patients. Psychophysical evaluation and X-ray analyses have shown that as electrode distance from the modiolus decreased: threshold current decreased; dynamic range increased; current spread as measured by forward masking studies, was more focused; electrode discrimination with loudness jitter (being abetter representation of the dynamic speech signal) improved; JNDs for loudness, expressed as a function of dynamic range, decreased.
  • Item
    Thumbnail Image
    Peri-modiolar electrode arrays: a comparison of electrode position n the human temporal bone
    Shepherd, R. K. ; Treaba, C. G. ; Cohen, L. ; Pyman, B. ; Huigen, J. ; Xu, J. ; Clark, Graeme M. (Monduzzi Editore, 1997)
    This paper describes a radiologic evaluation of three types of peri-modiolar arrays, comparing their trajectory within the scala tympani with a standard Mini-22 electrode. All peri-modiolar arrays were found to lie closer to the modiolus for much of their insertion length compared with the standard array. While one design showed evidence for the potential of increased insertion trauma, two designs produced satisfactory results. Although further electrode development, temporal bone and histopathologic studies arE required, it would appear that the benefits of peri-modiolar electrode arrays will be realised clinically.