Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    The progress of children using the multichannel cochlear implant in Melbourne
    Cowan, R. S. C. ; Dowell, R. C. ; Hollow, R. ; Dettman, S. J. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Galvin, K. L. ; Webb, R. C. ; Pyman, B. C. ; Cousins, V. C. ; Clark, Graeme M. ( 1995)
    Multi-channel cochlear implantation in children began in Australia in 1985 and there are now close to 4000 profoundly deaf children and adolescents using the Australian implant system around the world. The aim of the implant procedure is to provide adequate hearing for speech and language development through auditory input. This contrasts with the situation for adults with acquired deafness where the cochlear implant aims to restore hearing for someone with well-developed auditory processing and language skills. As with adults, results vary over a wide range for children using the Multi-channel implant. Many factors have been suggested that may contribute to differences in speech perception for implanted children. In an attempt to better understand these factors, the speech perception results for children implanted in Melbourne were reviewed and subjected to statistical analysis. This has indicated that the amount of experience with the implant and the length of sensory deprivation are strongly correlated with perceptual results. This means that younger children are likely to perform better with an implant and that a number of years of experience are required for children to reach their full potential. The results have also indicated that educational placement and management play a crucial role in children reaching their potential. Overall, 60% of the children and adolescents in the study have reached a level of open-set speech understanding using the cochlear implant without lipreading.
  • Item
    Thumbnail Image
    Habilitation issues in the management of children using the cochlear multiple-channel cochlear prosthesis
    Cowan, Robert S. C. ; Barker, Elizabeth J. ; Dettman, Shani J. ; Blamey, Peter J. ; RANCE, GARY ; Sarant, Julia Z. ; Galvin, Karyn L. ; Dawson, Pam W. ; Hollow, Rod ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. (Wien, 1994)
    Since 1985, a significant proportion of patients seen in the Melbourne cochlear implant clinic have been children. The children represent a diverse population, with both congenital and acquired hearing-impairments, a wide-range of hearing levels pre-implant, and an age range from 2 years to 18 years. The habilitation programme developed for the overall group must be flexible enough to be tailored to the individual needs of each child, and to adapt to the changing needs of children as they progress. Long-term data shows that children are continuing to show improvements after 5-7 years of device use, particularly in their perception of open-set words and sentences. Habilitation programs must therefore be geared to the long-term needs of children and their families. Both speech perception and speech production need to be addressed in the specific content of the habilitation program for any individual child. In addition, for young children, the benefits of improved speech perception should have an impact on development of speech and language, and the focus of the programme for this age child will reflect this difference in emphasis. Specific materials and approaches will vary for very young children, school-age and teenage children. In addition, educational setting will have a bearing on the integration of listening and device use into the classroom environment.
  • Item
    Thumbnail Image
    Speech perception benefits for implanted children with preoperative residual hearing [Abstract]
    Hollow, R. ; Rance, G. ; Dowell, R.C. ; Pyman, B. ; Clark, Graeme M. ; Cowan, R. S. C. ; Galvin, K. L. ; Barker, E. J. ; Sarant, J. Z. ; Dettman, S. ( 1995)
    Since the implantation of the first children with the Nucleus 22-channel cochlear prosthesis in Melbourne in 1985, there has been rapid expansion in the number of implanted children world-wide. Improved surgical technique and experience in paediatric assessment and management have contributed to a trend to implant very young children. At the same time there has also been continuing development of improved speech processing strategies resulting in greater speech perception benefits. In the Melbourne program, over 60% of children obtain significant scores on open-set word and sentence tests using their cochlear implant alone without the aid of lipreading. As parents and professionals have become aware of these improved benefits to speech perception benefits in profoundly deaf children, there have been requests to consider implanting severely-to-profoundly deaf children. In these children with higher levels of residual hearing, only those children with poorer-than-expected performance on speech perception tests using hearing aids have been considered for surgery. A number of such cases have now been implanted in the Melbourne program. The speech perception benefits for this group are reported and are being compared with benefits for the profoundly deaf group of children.
  • Item
    Thumbnail Image
    Speech perception benefits for children using the Speak speech processing strategy in quiet and noise [Abstract]
    Whitford, L.A. ; Dowell, R.C. ; Brown, C. ; Gibson, W.P.R. ; Clark, Graeme M. ; Cowan, R. S. C. ; Galvin, K. L. ; Barker, E. J. ; Sarant, J. Z. ; Shaw, S. ; Everingham, C. ( 1995)
    The Speak speech processing strategy, based on the Spectral Maxima Speech Processor (SMSP) developed at the University of Melbourne, has now been implemented in the Spectra 22 speech processor developed by Cochlear Pty Limited, and clinical trials of both patients changing from the previous Multipeak strategy to Speak and patients starting up with. Speak have been conducted. Results in adult patients changing to Speak have shown significant improvements in speech perception in quiet and particularly in background noise as compared with Multipeak. Preliminary studies with children changing from Multipeak to Speak strategy, measured over a 10 month period, have also shown significant benefits from use of the Speak scheme in both quiet and noisy test situations. Results of follow up studies of these children after more than one year experience with the Speak processing strategy are presented. Statistical analysis of performance over time suggests that an increase in benefit is observed in children after additional experience with the Speak processing strategy. In addition, results for children who have used only the Speak processing strategy from the time of implantation are also presented. The results confirm that the Speak processing strategy provides significant benefits in quiet, and particularly in the presence of background noise for both groups of patients.