Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 22
  • Item
    Thumbnail Image
    The perceptual dimensions of single-electrode and nonsimultaneous dual-electrode stimuli in cochlear implantees
    McKay, Colette M. ; McDermott, Hugh J. ; Clark, Graeme M. ( 1996)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    The importance of different frequency bands to the speech perception of cochlear implantees [Abstract]
    Henry, Belinda A. ; McKay, Colette M. ; McDermott, Hugh J. ; Clark, Graeme M. ( 1996)
    It is well known that cochlear implantees exhibit a wide range of speech perception ability. Understanding the reason for this variability may lead to improved speech processors. This study investigates whether implantees rely on different areas of the speech spectrum for speech cues, compared to normally hearing listeners, and whether poor performers rely on different spectral areas than better performers. Six subjects with the Mini System 22 implant and using the SPEAK strategy participated in this experiment. Scores for monosyllabic words were obtained using the full speech spectrum and with selected frequency bands removed from the subjects’ speech processor maps. The Articulation Index (AI) is a measure of the proportion of speech information available to a listener, and the relative contribution to AI from different frequency bands is termed the Importance Function. The five frequency bands studied in this experiment were determined to be of equal importance to normally hearing listeners for the speech material used. The scores for each implantee were transformed into AI values, and hence the relative importance of the bands was determined. This relative importance was compared between the implantee group and normally hearing listeners to determine the way in which speech perception by electrical stimulation varies from that by acoustical stimulation. Comparisons were also made between individual implantees to determine whether correlations exist between their speech perception ability and their use of cues in different parts of the spectrum. Further research will determine whether the differences among implantees are correlated with their ability to perceive changes in stimulation place or temporal characteristics.
  • Item
    Thumbnail Image
    Evaluation of the Nucleus Spectra 22 Processor and New Speech Processing Strategy (SPEAK) in postlinguistically deafened adults
    Whitford, Lesley A. ; Seligman, Peter M. ; Everingham, Colleen E. ; Antognelli, Trisha ; Skok, Marisa C. ; Hollow, Rodney D. ; Plant, Kerrie L. ; Gerin, Elvira S. ; Staller, Steve J. ; McDermott, Hugh J. ; Gibson, William R. ; Clark, Graeme M. ( 1995)
    A new speech processing strategy (SPEAK) has been compared with the previous Multipeak (MPEAK) strategy in a study with 24 postlinguistically deafened adults. The results show that performance with the SPEAK coding strategy was significantly better for 58.3% of subjects on closed-set consonant identification, for 33.3% of subjects on closed-set vowel identification and open-set monosyllabic word recognition, and for 81.8% of subjects on open-set sentence recognition in quiet and in competing noise (+ 10 dB signal-to-noise ratio). By far the largest improvement observed was for sentence recognition in noise, with the mean score across subjects for the SPEAK strategy twice that obtained with MPEAK.
  • Item
    Thumbnail Image
    Loudness summation for two channels of stimulation in cochlear implants: effects of spatial and temporal separation
    McKay, C. M. ; McDermott, H. J. ; Clark, Graeme M. ( 1995)
    An experiment with four implantees with the Mini System 22 device was undertaken to measure the loudness summation across two channels of stimulation, with stimuli in which the current pulses were delivered alternately to each channel. The effects of varying spatial separation, temporal separation, and extent of stimulation were investigated. It was found that the absolute amount of summation varied among subjects, and was in general independent of electrode separation, except for a reduction at zero separation. Widening of the spatial extent of the stimulation did not have a consistent effect. There was a reduction in summation for all subjects at zero electrode separation when the time between the two pulses was increased from less than I millisecond to 2 milliseconds. In conclusion, loudness summation did not appear to be highly dependent on parameters that affect the spatial current spread in the cochlea. Further study of the effect of temporal parameters on loudness may help to quantify interaction between stimulation channels.
  • Item
    Thumbnail Image
    Pitch matching of amplitude-modulated current pulse trains by cochlear implantees: the effect of modulation depth
    McKay, Colette M. ; McDermott, Hugh J. ; Clark, Graeme M. ( 1995)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Evaluation of a new Spectral Peak coding strategy for the Nucleus 22 channel cochlear implant system
    Skinner, Margaret W. ; Clark, Graeme M. ; Whitford, Lesley A. ; Seligman, Peter M. ; Staller, Steven J. ; Shipp, David B. ; Shallop, Jon K. ; Everingham, Colleen ; Menapace, Christine M. ; Arndt, Patti L. ; Antogenelli, Trisha ; Brimacombe, Judith A. ; Pijl, Sipke ; Daniels, Paulette ; George, Catherine R. ; McDermott, Hugh J. ; Beiter, Anne L. ( 1994)
    Sixty-three postlinguistically deaf adults from four English-speaking countries participated in a 17-week field study of performance with a new speech coding strategy, Spectral Peak (SPEAK), and the most widely used strategy, Multipeak (MPEAK), both of which are implemented on wearable speech processors of the Nucleus 22 Channel Cochlear Implant System; MPEAK is a feature-extraction strategy, whereas SPEAK is a filterbank strategy. Subjects' performance was evaluated with an experimental design in which use of each strategy was reversed and replicated (ABAB). Average scores for speech tests presented sound-only at 70 dB SPL were higher with the SPEAK strategy than with the MPEAK strategy. For tests in quiet, mean scores for medial vowels were 74.8 percent versus 70.1 percent; for medial consonants, 68.6 percent versus 56.6 percent; for monosyllabic words, 33.8 percent versus 24.6 percent; and for sentences, 77.5 percent versus 67.4 percent. For tests in noise, mean scores for Four-Choice Spondees at +10 and +5 dB signal-to-noise ratio (S/N) were 88.5 percent versus 73.6 percent and 80.1 percent versus 62.3 percent, respectively; and for sentences at +15 dB, +10, and +5 dB S/N, 66.5 percent versus 43.4 percent, 61.5 percent versus 37.1 percent, and 60.4 percent versus 31.7 percent, respectively. Subjects showed marked improvement in recognition of sentences in noise with the new SPEAK filterbank strategy. These results agree closely with subjects' responses to a questionnaire on which approximately 80 percent reported they heard best with the SPEAK strategy for everyday listening situations.
  • Item
    Thumbnail Image
    The spectral maxima sound processor: recent findings in speech perception and psychophysics
    McKay, Colette M. ; McDermott, Hugh J. ; Vandali, Andrew E. ; Clark, Graeme M. (Wien, 1994)
    The Spectral Maxima Sound Processor (SMSP) was developed at the University of Melbourne for use with the Mini System 22 implant manufactured by Cochlear Pty Ltd. The SMSP has been shown in recent studies to provide improved speech perception to implantees when compared to the currently commercially available processor for this implant (the MSP (MULTIPEAK) processor). In the first of three experiments, the effect on speech perception of increasing the rate of stimulation of the SMSP and of increasing the number of electrodes activated in each stimulation cycle was studied. It was found that these parameter changes made little difference to speech perception in quiet but both changes were advantageous for some subjects when listening in noise. The second and third experiments investigated psychophysically the effects of two aspects of the SMSP strategy which differ from previous processors for this implant. In the second experiment, it was found that concurrent stimulation of two adjacent or nearby electrodes evoked a pitch which was intermediate to that of either electrode. This may explain, in part, the better discrimination of vowel formants by users of the SMSP. In the third experiment, it was found that a pitch related to the modulation frequency was evoked by amplitude-modulating a constant rate stimulus, provided that the rate of stimulation was sufficiently high (four times the modulation frequency) or a multiple of the modulation frequency. This result may explain the equal ability of SMSP and MSP users to perceive speaker differences and intonation patterns, even though the rate of stimulation is constant In the SMSP.
  • Item
    Thumbnail Image
    Speech processing for multichannel cochlear implants: variations of the Spectral Maxima Sound Processor strategy
    McKay, Colette M. ; Vandali, Andrew E. ; McDermott, Hugh J. ; Clark, Graeme M. ( 1994)
    The Spectral Maxima Sound Processor (SMSP) incorporates a bank of 16 band-pass filters which are assigned to 16 intracochlear electrodes. In each stimulation period 6 electrodes are activated, based on the outputs of the filters with the largest amplitudes. The SMSP has previously been compared with the present MSP (MULTIPEAK) processor and found to improve speech comprehension results. The SMSP speech processing scheme has recently been implemented successfully in a new speech processor, also developed at the University of Melbourne, which utilises digital signal processing techniques. The programming flexibility of this processor has facilitated the investigation of variations of the SMSP strategy which might provide further enhancement of speech perception. Three variations have been investigated: firstly, increasing the constant pulse rate from the usual 250 Hz to 400 Hz; secondly, changing the number of electrodes selected in each stimulation period from 6 to numbers between 4 and 8; thirdly, sharpening the spectral peaks prior to selection of the active electrodes. The results of these studies showed that all three variations had minimal effect on speech perception in quiet, but that increasing the number of electrodes selected for stimulation to 8, or increasing the rate of stimulation, was advantageous for some subjects when listening in background noise.
  • Item
    Thumbnail Image
    Pitch percepts associated with amplitude-modulated current pulse trains in cochlear implantees
    McKay, Colette M. ; McDermott, Hugh J. ; Clark, Graeme M. ( 1994)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    A comparison of speech perception of cochlear implantees using the Spectral Maxima Sound Processor (SMSP) and the MSP (Multipeak) processor
    McKay, Colette M. ; McDermott, Hugh J. ; Vandali, Andrew E. ; Clark, Graeme M. ( 1992)
    The Spectral Maxima Sound Processor (SMSP) is a portable speech processor which has recently been developed at the University of Melbourne for use with multiple-electrode cochlear implants. In this processor, the six largest outputs (maxima) of 16 bandpass filters are used to stimulate the cochlea on a place basis at a constant rate. This speech processing strategy has been compared with the MSP(MULTIPEAK) strategy, in which four electrodes are selected for stimulation in every glottal pulse period. The study was undertaken on four postlinguistically deaf adults. The results show that, for this group of subjects, the performance of the SMSP processor was significantly better than that of the MSP(MUL TIPEAK) processor for the recognition of closed-set vowels and consonants, open-set monosyllabic words, and open-set sentences in noise, when using electrical stimulation alone. The SMSP mean scores were: vowels 91.3%, consonants 74.9%, words 57.4%, and sentences in noise 78.7%. The MSP(MULTIPEAK) mean scores were: vowels 76.3%, consonants 59.4%, words 39.9%, and sentences in noise 50.0%.