Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    The progress of children using the multichannel cochlear implant in Melbourne
    Cowan, R. S. C. ; Dowell, R. C. ; Hollow, R. ; Dettman, S. J. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Galvin, K. L. ; Webb, R. C. ; Pyman, B. C. ; Cousins, V. C. ; Clark, Graeme M. ( 1995)
    Multi-channel cochlear implantation in children began in Australia in 1985 and there are now close to 4000 profoundly deaf children and adolescents using the Australian implant system around the world. The aim of the implant procedure is to provide adequate hearing for speech and language development through auditory input. This contrasts with the situation for adults with acquired deafness where the cochlear implant aims to restore hearing for someone with well-developed auditory processing and language skills. As with adults, results vary over a wide range for children using the Multi-channel implant. Many factors have been suggested that may contribute to differences in speech perception for implanted children. In an attempt to better understand these factors, the speech perception results for children implanted in Melbourne were reviewed and subjected to statistical analysis. This has indicated that the amount of experience with the implant and the length of sensory deprivation are strongly correlated with perceptual results. This means that younger children are likely to perform better with an implant and that a number of years of experience are required for children to reach their full potential. The results have also indicated that educational placement and management play a crucial role in children reaching their potential. Overall, 60% of the children and adolescents in the study have reached a level of open-set speech understanding using the cochlear implant without lipreading.
  • Item
    Thumbnail Image
    Chronic middle ear disease and cochlear implantation
    Donnelly, M. J. ; Pyman, B. C. ; Clark, Graeme M. ( 1995)
    Profound or total hearing loss can occur in the setting of chronic suppurative otitis media (CSOM), either coincidentally or secondary to the disease process. Obviously, inserting a foreign body through a potentially infected field into a space that communicates intracranially presents a challenging management problem. This paper presents the experience from the Melbourne Cochlear Implant Clinic (CIC) in implanting patients with bilateral CSOM. This is certainly not a common problem, as there have been only 3 cases from 121 implanted adults. However, we feel that it is an important issue with potentially devastating consequences. In addition, there are many countries in which bilateral CSOM is a more common problem and cause of profound or total hearing loss.
  • Item
    Thumbnail Image
    The development of the Melbourne/Cochlear multiple-channel cochlear implant for profoundly deaf children
    Clark, Graeme M. ; Busby, Peter A. ; Dowell, Richard C. ; Dawson, Pamella W. ; Pyman, Brian C. ; Webb, Robert L. ; Staller, Steven J. ; Beiter, Anne L. ; Brimacombe, Judith A. ( 1992)
    In 1978-79, a speech processing strategy which extracted the voicing (FO) and second formant (F2) frequencies and presented these as rate and place of stimulation respectively to residual auditory nerve fibres was developed for the University of Melbourne's prototype multiple-channel receiver-stimulator (Clark et aI1977, Clark et a11978, Tong et aI1980). This speech processing strategy was shown to provide post linguistically deaf adults with some open-set speech comprehension using electrical stimulation alone, and considerable help when used in combination with lipreading (Clark et al 1981).
  • Item
    Thumbnail Image
    Surgical complications with the cochlear multiple-channel intracochlear implant: experience at Hannover and Melbourne
    Webb, Robert L. ; Lehnhardt, Ernst ; Clark, Graeme M. ; Laszig, Roland ; Pyman, Brian C. ; Franz, Burkhard K-H. G. ( 1991)
    The surgical complications for the first 153 multi-channel cochlear implant operations carried out at the Medizinische Hochschule in Hannover and the first 100 operations at The University of Melbourne Clinic, The Royal Victorian Eye and Ear Hospital, are presented. In the Hannover experience the major complications were wound breakdown, wound infection, electrode tie erosion through the external auditory canal, electrode slippage, a persistent increase in tinnitus, and facial nerve stimulation. The incidence of wound breakdown requiring removal of the package was 0.6% in Hannover and 1.0% in Melbourne. The complications for the operation at both clinics were at acceptable levels. It was considered that wound breakdown requiring implant removal could be kept to a minimum by making a generous incision and suturing the flap without tension.
  • Item
    Thumbnail Image
    The histopathology of the human temporal bone and auditory central nervous system following cochlear implantation in a patient: correlation with psychophysics and speech perception results
    Clark, Graeme M. ; Shepherd, Robert K. ; Franz, Burkhard K.-H. ; Dowell, Richard C. ; Tong, Yit C. ; Blamey, Peter J. ; Webb, Robert L. ; Pyman, Brian C. ; McNaughton, Judy ; Bloom, David M. ; Kakulas, Byron A. ; Siejka, Stan ( 1988)
    Cochlear implantation has become a recognised surgical procedure for the management of a profound-total hearing loss, especially in patients who have previously had hearing before going deaf (postlingual deafness). Nevertheless, it is important for progress in the field that patients who have had a cochlear implant, bequeath their temporal bones for research. This will then make it possible to further assess the safety of the procedure, and the factors that are important for its effectiveness. Biological safety has been assessed in a number of studies on animals, in particular, the biocompatibility of the materials used (1,2), the histopathological effects of long-term implantation on the cochlea (3, 4, 5, 6, 7, 8), and the effects of chronic electrical stimulation on the viability of spiral ganglion cells (9, 10, 11, 12). In studying the temporal bones of deceased cochlear implant patients it is possible to help establish that the animal experimental results are applicable to Man. Surgical trauma has been most frequently evaluated by inserting electrodes into cadaver temporal bones. It is important, however, to examine bones that have been previously implanted surgically to ensure that the cadaver findings are applicable to operations on patients. The effectiveness of cochlear implantation can be studied by correlating the histopathological findings, the dendrite and spiral ganglion cell densities, in particular, with the psychophysical and speech perception results. Other benefits also accrue, for example, establishing the accuracy of preoperative X-rays and electrical stimulation of the promontory in predicting cochlear pathology and spiral ganglion cell numbers. For the above reasons it has been especially interesting to examine both the temporal bones and central nervous system from one of our patients (patient 13) who participated in the initial clinical trial of the Cochlear Proprietary Limited (a member of the Nucleus group) multiple-electrode cochlear prosthesis, and who died due to a myocardial infarction following coronary bypass surgery.
  • Item
    Thumbnail Image
    The University of Melbourne/Nucleus cochlear prosthesis
    Clark, Graeme M. ; Blamey, P. J. ; Brown, A. M. ; Busby, P. A. ; Dowell, R. C. ; Franz, B. K-H. ; Millar, J. B. ; Pyman, B. C. ; Shepherd, R. K. ; Tong, Y. C. ; Webb, R. L. ; Brimacombe, J. A. ; Hirshorn, M. S. ; Kuzma, J. ; Mecklenburg, D. J. ; Money, D. K. ; Patrick, J. F. ; Seligman, P. M. ( 1988)
    This is a review of research to develop the University of Melbourne/Nucleus cochlear prosthesis for patients with a profound-total hearing loss. A more complete review can be obtained in Clark et al. A prototype receiver-stimulator and multiple-electrode array developed at the University of Melbourne was first implanted in a postlingually deaf adult patient with a profound-total hearing loss on 1 August 1978. A speech processing strategy which could help this patient understand running speech, especially when combined with lipreading was developed in 1978 following initial psychophysical studies. A prototype wearable speech processor was fabricated in 1979, that could provide significant help for the first two patients in understanding running speech when used in combination with lipreading compared with lipreading alone, and it also enabled them to understand some running speech when using electrical stimulation alone. An implantable receiver-stimulator and wearable speech processor embodying the principles of the prototype devices were then produced for clinical trial by the Australian biomedical firm, Nucleus Ltd, and its subsidiaries, Cochlear Pty Ltd and Cochlear Corporation. This cochlear implant was initially clinically trialled on six patients at The Royal Victorian Eye & Ear Hospital in 1982, and shown to give similar results to those obtained with the prototype device. In view of these findings a clinical trial was carried out for a Premarket Approval Application to the US Food and Drug Administration (FDA), and extended to a number of centres in the US, Canada, and West Germany. This clinical trial confirmed that patients could understand running speech when electrical stimulation was combined with lipreading, and that some patients could also understand running speech when using electrical stimulation alone. Today, more than 600 patients world-wide are using cochlear implants developed from the research described in this paper.
  • Item
    Thumbnail Image
    Revised selection criteria for the multiple-channel cochlear implant
    Pyman, Brian C. ; Dowell, Richard C. ; Brown, A. M. ; Clark, Graeme M. ; Webb, Robert L. ; Franz, Burkhard K.-H. G. ; Dettman, Shani J. ; Rowland, L. C. ; Blamey, Peter J. ( 1991)
    The criteria of suitability for a cochlear implant have been extended from total deafness to include some individuals with residual hearing. The aim of the initial hearing evaluation is to define whether the speech discrimination is good enough to justify perseverance with a hearing aid. In adults, usually the pure tone audiogram and speech audiometry are accurate and consistent. In children, however, to achieve accuracy, free field testing must be complemented by repeated aided conditioned responses and objective evoked response audiometry. When a child has residual hearing it is more difficult to assess the potential for habilitation using an aid. For both adults and children, it is necessary to make a selection from a battery of tests on the basis of the subjects experience. This development highlights the need for otologists and audiologists to become familiar with the battery of tests used in evaluating severe deafness (Plant 1984) and to review decisions made about the management of people with severe to total deafness. In suitable people, the aim of treatment with the Cochlear multichannel implant and its multipeak speech processor is a significant score for open set speech discrimination tests using hearing alone. This cannot always be achieved but as long as the evaluation protocol has been used to warn patients before the operation, they will be satisfied with a result where the implant complements lip reading resulting in discrimination of running speech and detection of environmental sounds.