Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Comparison of current speech coding strategies
    Whitford, L. A. ; Seligman, P. M. ; Blamey, Peter J. ; McDermott, H. J. ; Patrick, J. F. ( 1993)
    This paper reports on two studies carried out at the University of Melbourne jointly with Cochlear Pty Ltd. The studies demonstrated substantial speech perception improvements over the current Multipeak strategy in background noise.
  • Item
    Thumbnail Image
    The Nucleus 22-channel cochlear implant system
    Patrick, James F. ; Clark, Graeme M. ( 1991)
    Cochlear implants have become the treatment of choice for profoundly deaf adults and children who obtain little or no benefit from conventional amplification. Sounds are translated into small electric currents that stimulate the auditory nerves in the cochlea and generate hearing sensations. The Nucleus cochlear implant is the result of more than 20 yr of research and development, first at the University of Melbourne, Australia and later by Cochlear Proprietary Limited (Sydney, Australia) in collaboration with the University of Melbourne. Today, the cochlear Mini-22 implant system is approved by the United States Food and Drug Administration (FDA) for use in adults and children, and has been implanted in more than 3000 patients worldwide. Although this chapter describes the cochlear implant system and clinical issues related to its use in children, much of the material has been derived from experience with adults. Furthermore, the Nucleus system is not static. It is being continually improved both in performance and ease of use. The purpose of this chapter is to describe developments leading up to and including the present Nucleus cochlear implant system. Other chapters in this issue present results and procedures relating to pediatric applications of the device.
  • Item
    Thumbnail Image
    The University of Melbourne/Nucleus cochlear prosthesis
    Clark, Graeme M. ; Blamey, P. J. ; Brown, A. M. ; Busby, P. A. ; Dowell, R. C. ; Franz, B. K-H. ; Millar, J. B. ; Pyman, B. C. ; Shepherd, R. K. ; Tong, Y. C. ; Webb, R. L. ; Brimacombe, J. A. ; Hirshorn, M. S. ; Kuzma, J. ; Mecklenburg, D. J. ; Money, D. K. ; Patrick, J. F. ; Seligman, P. M. ( 1988)
    This is a review of research to develop the University of Melbourne/Nucleus cochlear prosthesis for patients with a profound-total hearing loss. A more complete review can be obtained in Clark et al. A prototype receiver-stimulator and multiple-electrode array developed at the University of Melbourne was first implanted in a postlingually deaf adult patient with a profound-total hearing loss on 1 August 1978. A speech processing strategy which could help this patient understand running speech, especially when combined with lipreading was developed in 1978 following initial psychophysical studies. A prototype wearable speech processor was fabricated in 1979, that could provide significant help for the first two patients in understanding running speech when used in combination with lipreading compared with lipreading alone, and it also enabled them to understand some running speech when using electrical stimulation alone. An implantable receiver-stimulator and wearable speech processor embodying the principles of the prototype devices were then produced for clinical trial by the Australian biomedical firm, Nucleus Ltd, and its subsidiaries, Cochlear Pty Ltd and Cochlear Corporation. This cochlear implant was initially clinically trialled on six patients at The Royal Victorian Eye & Ear Hospital in 1982, and shown to give similar results to those obtained with the prototype device. In view of these findings a clinical trial was carried out for a Premarket Approval Application to the US Food and Drug Administration (FDA), and extended to a number of centres in the US, Canada, and West Germany. This clinical trial confirmed that patients could understand running speech when electrical stimulation was combined with lipreading, and that some patients could also understand running speech when using electrical stimulation alone. Today, more than 600 patients world-wide are using cochlear implants developed from the research described in this paper.
  • Item
    Thumbnail Image
    A multiple electrode cochlear implant
    Clark, Graeme M. ; Tong, Y. C. ; Black, R. ; Forster, I. C. ; Patrick, J. F. ; Dewhurst, D. J. (Cambridge University Press, 1977)
    It is generally agreed that if a cochlear implant hearing prosthesis is to enable a patient to understand speech, it must be a multiple-electrode system. In addition, stimulation of the auditory nervous system should approximate the patterns of neural excitation occurring in people with normal hearing, and this is especially important when a patient has previously experienced hearing. For this reason the correct application of electrophysiological principles to the design of a hearing prosthesis is desirable, and is discussed in this paper with special reference to a device developed in the Departments of Otolaryngology and Electrical Engineering at the University of Melbourne (UMDOLEE).