Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 18
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve at high rates: I. Effect on residual hearing [Abstract]
    Xu, J. ; Shepherd, R. K. ; Clark, Graeme M. ( 1996)
    In addition to direct excitation of auditory nerve fibres, cochlear implant patients with small amounts of residual hearing may receive important additional auditory cues via electrophonic activation of hair cells 1. Before incorporating electrophonic hearing into speech processing strategies, the extent of hair cell survival following cochlear implantation must first be determined. We have recently demonstrated widespread survival of hair cells apical to electrode arrays implanted for periods of up to three years, the present report describes the effects of chronic electrical stimulation on hair cell survival.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve at high rates: II. Cochlear pathophysiology [Abstract]
    Shepherd, R. K. ; Xu, J. ; Clark, Graeme M. ( 1996)
    A major factor in the improved performance of cochlear implant patients has been the use of high stimulus rate speech processing strategies. While these strategies show clear clinical advantage, we know little of their long-term safety. Indeed, recent studies have indicated that high stimulus rates at intensities above clinical limits, can result in neural damage as a result of prolonged neuronal hyperactivity. The present study was designed to evaluate the effects of chronic electrical stimulation of the auditory nerve at high rates, using intensities within clinical limits.
  • Item
    Thumbnail Image
    Spatial representation of the cochlea within the inferior colliculus of neonatally deafened kittens following chronic electrical stimulation of the auditory nerve [Abstract]
    Shepherd, R. K. ; Martin, R. L. ; Brown, M. ; Clark, Graeme M. ( 1995)
    The orderly tonotopic representation of the cochlea is accurately reproduced within the central auditory system of normal hearing animals. Any degradation of this representation as a result of a neonatal hearing loss or chronic electrical stimulation during development could have important implications for the use of multichannel cochlear implants in young children. In the present study we have used 2-deoxyglucose autoradiography (2-00) to examine the topographic representation of the cochlea within the inferior colliculus (IC) of neonatally deafened kittens following periods of chronic intracochlear electrical stimulation.
  • Item
    Thumbnail Image
    Cochlear histopatholgic characteristics following long-term implantation: safety studies in the young monkey
    Burton, Martin J. ; Shepherd, Robert K. ; Clark, Graeme M. ( 1996)
    Objective: To evaluate the safety of cochlear implantation in children 2 years of age or younger using a non-human primate model.
  • Item
    Thumbnail Image
    Cochlear pathology following chronic electrical stimulation using non charge balanced stimuli
    Shepherd, Robert K. ; Matsushima, Jun-Ichi ; Millard, R. E. ; Clark, Graeme M. ( 1991)
    During the course of a chronic intracochlear electrical stimulation study using charge balanced biphasic current pulses, one animal inadvertently received a short period of direct current (DC) stimulation at a level of approximately 1 µA. Subsequent, the animal was chronically stimulated using a poorly charge balanced waveform that produced a DC level of approximately 2 µA. Extensive pathological changes were observed within the cochlea. These changes included widespread spiral ganglion cell loss and new bone growth that extended throughout all turns of the cochlea. Significant changes in the morphology of the electrically evoked auditory brainstem response (EABR) were associated with these pathological changes. EABRs recorded prior to the DC stimulation exhibited a normal waveform morphology. However, responses recorded during the course of the DC stimulation were dominated by a short latency response believed to be vestibular in origin. The response thresholds were also significantly higher than levels recorded before the DC stimulation. In contrast, the contralateral cochlea, stimulated using charge balanced stimuli, showed no evidence of adverse pathological changes. Furthermore, EABRs evoked from this cochlea remained stable throughout the chronic stimulation period. Although preliminary, the present results illustrate the adverse nature of poorly charge balanced electrical stimuli. These results have important implications for both the design of neural prostheses and the use of DC stimuli to suppress tinnitus in patients.
  • Item
    Thumbnail Image
    Evaluation of a sealing device for the intracochlear electrode entry point
    PURSER, SIMON ; Shepherd, Robert K. ; Clark, Graeme M. ( 1991)
    Experimental evidence in animals indicates that middle ear infection in the presence of an intracochlear electrode may result in widespread cochlear damage due to the passage of organisms or products of inflammation through the electrode entry point. In this paper, results are presented of a study undertaken to test the efficacy of a titanium electrode entry point seal designed by the principal author, to protect the implanted cochlea from the pathological effects of experimentally induced pneumococcal otitis media in five cats. lntracochlear electrodes were inserted into both cochleas of each cat, one side sealed with the device and the other side left unsealed, as is current operative practice in human cochlear implantation, as a control. After a minimum of twelve post-operative weeks, pneumococcal otitis media was successfully inoculated in all but one (control) middle ear, which was not inoculated due to accidental removal of the electrode. One week after inoculation the animals were sacrificed and cochleas removed for histological examination. Results of histological examination of the cochleas are presented together with bacteriological data. The results of microscopic examination of the bond interface between otic capsule bone and the titanium seal are presented.
  • Item
    Thumbnail Image
    Electrical stimulation of the auditory nerve in deaf kittens: effects on cochlear nucleus morphology
    Matsushima, Jun-Ichi ; Shepherd, Robert K. ; Seldon, H. Lee ; Xu, Shi-Ang ; Clark, Graeme M. ( 1991)
    The present study examines the effects of long-term electrical stimulation of the auditory nerve on the morphology of neurons in the cochlear nucleus in young, sensorineural deaf animals. Kittens, systemically deafened using kanamycin and ethacrynic acid, received bilateral cochlear implants and were stimulated unilaterally for periods of up to four months. After sacrifice, cross-sectional areas of neuron somata were measured with an image-analysis system and compared using nonparametric statistics. The areas of cell somata within the anteroventral cochlear nucleus (AVCN) on the stimulated side were significantly larger than those of corresponding somata on the control, unstimulated side (P < 0.001). However, there was no statistically significant difference among dorsal cochlear nucleus (DCN) neurons. These results indicate that long-term electrical stimulation of the auditory nerve can at least partially negate some effects of early postnatal auditory deprivation at the level of the cochlear nucleus.
  • Item
    Thumbnail Image
    Multichannel cochlear implantation in children: a summary of current work at The University of Melbourne
    Dowell, Richard C. ; Dawson, Pam W. ; Dettman, Shani J. ; Shepherd, Robert K. ; Whitford, Lesley A. ; Seligman, Peter M. ; Clark, Graeme M. ( 1991)
    This paper summarizes research work relating to multichannel cochlear implantation in children at the University of Melbourne. Ongoing safety studies relating to the implantation of young children are discussed. Results of these studies suggest that special design considerations are necessary for a prosthesis to be implanted in children under the age of 2 years. Results of clinical assessment of implanted children and adolescents are also discussed in terms of speech perception, speech production, and language development, and some possible predictive factors are suggested. Preliminary data suggests that a high proportion of young children can achieve open-set speech perception with the cochlear implant given appropriate training and support. Initial results with adults using new speech processing hardware and a new coding scheme are also presented. These suggest that improved speech perception in quiet and competing noise is possible with the new system.
  • Item
    Thumbnail Image
    Peri-modiolar electrode arrays: a comparison of electrode position n the human temporal bone
    Shepherd, R. K. ; Treaba, C. G. ; Cohen, L. ; Pyman, B. ; Huigen, J. ; Xu, J. ; Clark, Graeme M. (Monduzzi Editore, 1997)
    This paper describes a radiologic evaluation of three types of peri-modiolar arrays, comparing their trajectory within the scala tympani with a standard Mini-22 electrode. All peri-modiolar arrays were found to lie closer to the modiolus for much of their insertion length compared with the standard array. While one design showed evidence for the potential of increased insertion trauma, two designs produced satisfactory results. Although further electrode development, temporal bone and histopathologic studies arE required, it would appear that the benefits of peri-modiolar electrode arrays will be realised clinically.
  • Item
    Thumbnail Image
    Increased survival of auditory neurones treated with LIF
    Marzella, P. L. ; Clark, Graeme M. ; Shepherd, R. K. ; Bartlett, P. F. ; Kilpatrick, T. J. ( 1997)
    Degeneration of spiral ganglion cells (SOC) is one of the most common correlates of sensorineural hearing loss (1). Several lines of evidence show that the continued supply of growth factors is responsible for maintaining auditory neurone integrity (2). In the present study SOC cultures were used as a model of auditory innervation to test the ability of the cytokine leukaemia inhibitory factor (LIF) and the neurotrophin NT -3 to promote neuronal survival individually or in combination. The data demonstrate that LIF promotes the survival of SOC in a concentration-dependent manner, with a significant increase in neuronal survival at concentrations as low as 0.1 ng/ml compared to untreated wells ( p< 0.05), and a maximum neuronal survival at 10 ng/ml. In addition, when used in combination LIF and NT-3 were more effective in promoting neuronal survival than either factor individually, with a significant increase in survival at concentrations of 0.1ng mI[to the power of]-1/0.1 ng mI[to the power of]-1 (LIF/NT-3). To our knowledge this is the first study reporting that LIF has trophic activity on SOC. Moreover, the data suggest that a combination of several growth factors may provide a better approach when developing pharmacological therapies for auditory neuron repair.