Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Reduction in excitability of the auditory nerve following electrical simulation at high stimulus rates. II. Comparison of fixed amplitude with amplitude modulated stimuli
    TYKOCINSKI, MICHAEL ; Shepherd, Robert K. ; Clark, Graeme M. ( 1997)
    We have previously shown that acute electrical stimulation of the auditory nerve using charge-balanced biphasic current pulses presented continuously can lead to a prolonged decrement in auditory nerve excitability (Tykocinski et al., Hear. Res. 88 (1995), 124-142). This work also demonstrated a reduction in electrically evoked auditory brainstem response (EABR) amplitude decrement when using an otherwise equivalent pulse train with a 50% duty cycle. In the present study we have extended this work in order to compare the effects of electrical stimulation using both fixed amplitude electrical pulse trains and amplitude modulated (AM) pulse trains that more accurately model the dynamic stimulus paradigms used in cochlear implants. EABRs were recorded from guinea pigs following acute stimulation using AM trains of charge-balanced biphasic current pulses. The extent of stimulus-induced reductions in the EABR were compared with our previous results using either fixed amplitude continuous, or 50% duty cycle pulse trains operating at 0.34 µC/phase (2 mA, 170 µs/phase) at 400 or 1000 pulses/s (Tykocinski et al., Hear. Res. 88 (1995) 124-142). The AM pulse train, operating at the same rates, was based on a I-s sequence of the most extensively activated electrode of a Nucleus Mini-22 cochlear implant using the SPEAK speech processing strategy exposed to 4-talker babble, and delivered the same total charge as the fixed amplitude 50% duty cycle pulse train. Two hours of continuous stimulation induced a significant, rate-dependent reduction in auditory nerve excitability, and showed only a slight post-stimulus recovery for monitoring periods of up to 6 hours. Following 2 or 4 h of stimulation using an otherwise equivalent pulse train with a 50% duty cycle or the AM pulse train, significantly less reduction in the EABR was observed, and recovery to pre-stimulus levels was generally rapid and complete. These differences in the extent of the recovery between the continuous waveform and both the 50% duty cycle and AM waveforms were statistically significant for both 400 and 1000 pulses/s stimuli. Consistent with our previous results, the stimulus changes observed using AM pulse trains were rate dependent, with higher rate stimuli evoking more extensive stimulus-induced changes. The present findings show that while stimulus-induced reductions in neural excitability are dependent on the extent of stimulus-induced neuronal activity, the use of an AM stimulus paradigm further reduces post-stimulus neural fatigue.
  • Item
  • Item
    Thumbnail Image
    Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates
    TYKOCINSKI, MICHAEL ; Shepherd, Robert K. ; Clark, Graeme M. ( 1995)
    While recent studies have suggested that electrical stimulation of the auditory nerve at high stimulus rates (e.g., 1000 pulses/s) may lead to an improved detection of the fine temporal components in speech among cochlear implant patients, neurophysiological studies have indicated that such stimulation could place metabolic stress on the auditory nerve, which may lead to neural degeneration. To examine this issue we recorded the electrically evoked auditory brainstem response (EABR) of guinea pigs following acute bipolar intracochlear electrical stimulation using charge-balanced biphasic current pulses at stimulus rates varying from 100 to 1000 pulses/s and stimulus intensities ranging from 0.16 to 1.0 µC/phase. Charge density was held constant (~ 75 µC cm^-2 geom/phase) in those experiments. To monitor the recovery in excitability of the auditory nerve following this acute stimulation, EABR thresholds, wave I and III amplitudes and their latencies were determined for periods of up to 12 h following the acute stimulation. Higher stimulus rates and, to a lesser extent, higher intensities led to greater decrements in the post-stimulus EABR amplitude and prolonged the recovery period. While continuous stimulation at 100 pulses/s induced no decrement in the EABR, stimulation at 200 and 400 pulses/s produced an increasingly significant post-stimulus reduction of the EABR amplitude, which showed only partial recovery during the monitoring period. No EABR response could be evoked immediately following stimulation at 1000 pulses/s, using a probe intensity 16-19 dB below the stimulus intensity. However, partial EABR recovery was observed for wave III following stimulation at the lowest stimulus intensity (0.16 µC/phase). These stimulus-induced reductions in the EABR amplitude were also reflected in increased thresholds and latencies. Providing stimulus rate and intensity were held constant, stimulation at different charge densities (37.7, 75.5 and 150.7 µC cm^-2 geom/phase) had no influence on the post-stimulus EABR recovery. Significantly, the introduction of a 50% duty cycle into the stimulus pulse train resulted in a more rapid and complete post-stimulus recovery of the EABR compared to continuous stimulation. These data suggest that stimulus rate is a major contributor to the observed reduction in excitability of the electrically stimulated auditory nerve. This reduction may be a result of an activity-induced depletion of neural energy resources required to maintain homeostasis. The present findings have implications for the design of safe speech-processing strategies for use in multichannel cochlear implants.