Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    The role of radiographic phase-contrast imaging in the development of intracochlear electrode arrays
    XU, JIN ; Stevenson, Andrew W. ; Gao, Dachao ; TYKOCINSKI, MICHAEL ; LAWRENCE, DAVID ; Wilkins, Stephen W. ; Clark, Graeme M. ; Saunders, Elaine ; Cowan, Robert S. ( 2001)
    Objective: This study describes the application of a new radiographic imaging modality, phase-contrast radiography, to in vitro human temporal bone imaging and investigates it use in the development of new electrode arrays for cochlear implants. Background: The development of perimodiolar electrode arrays for cochlear implants requires detailed information from postoperative radiologic assessment on the position of the array in relation to the cochlear structures. Current standard radiographic techniques provide only limited details. Materials and Methods: Nucleus standard electrode arrays and perimodiolar Contour electrode arrays were implanted into the scala tympani of 11 human temporal bones. Both conventional and phase-contrast radiographs were taken of each temporal bone for comparative purposes. Results: Phase-contrast imaging provides better visulization of anatomic details of the inner ear and of the structure of the intracochlear electrode array, and better definition of electrode location in relation to cochlear walls. Conclusion: Phase-contrast radiography offers significant improvement over conventional radiography in images of in vitro human temporal bones. It seems to be a valuable tool in the development of intracochlear electrode arrays and cochlear implant research. However, this new radiographic technique still requires certain computational and physics challenges to be addressed before its clinical use can be established.
  • Item
    Thumbnail Image
    Cochlear view: postoperative radiography for cochlear implantation
    XU, JIN ; Xu, Shi-Ang ; Cohen, Lawrence T. ; Clark, Graeme M. ( 2000)
    Objective: This study aimed to define a spatial position of the cochlea in the skull based on anatomical studies and to design an appropriate method of skull radiography for demonstration of the multichannel intracochlear electrode array and the structures of the inner ear, for use in evaluating the electrode position and its related pitch perception. Background: The conventional skull radiograph (plain radiograph)can offer a complete and direct image of an intracochlear electrode array, if the x-ray is directed to the cochlea and parallel to the axis of the cochlea. Methods: Measurement from computed tomography imaging and three-dimensional reconstruction were performed to define the spatial position of the cochlea in the skull. Results: A radiographic projection, the cochlear view, was designed. A detailed radiographic method and radiologic interpretation of the cochlear view is described. An improved clinical method for measuring the longitudinal and angular position of the electrodes from the cochlear view is recommended. Conclusions: The application of the cochlear view has proved that it is beneficial postoperatively in documenting the results of cochlear implantation, and in evaluating the depth of insertion and position of individual electrodes. It serves as a valuable reference for managing frequency mapping, optimizing speech processing strategies, and further research purposes. The method can be widely used in cochlear implant clinics because of its simplicity, low radiation, speed, and minimal cost.
  • Item
    Thumbnail Image
    Comparison of electrode position in the human cochlea using various perimodiolar electrode arrays
    TYKOCINSKI, MICHAEL ; Cohen, Lawrence T. ; Pyman, Brian C. ; Roland (Jr), Thomas ; Treaba, Claudiu ; PALAMARA, JOSEPH ; Dahm, Markus C. ; Shepherd, Robert K. ; XU, JIN ; Cowan, Robert S. ; Cohen, Noel L. ; Clark, Graeme M. ( 2000)
    Objective: This study was conducted to evaluate the insertion properties and intracochlear trajectories of three perimodiolar electrode array designs and to compare these designs with the standard Cochlear /Melbourne array. Background: Advantages to be expected of a perimodiolar electrode array include both a reduction in stimulus thresholds and an increase in dynamic range, resulting in a more localized stimulation pattern of the spiral ganglion cells, reduced power consumption, and, therefore, longer speech processor battery life. Methods: The test arrays were implanted into human temporal bones. Image analysis was performed on a radiograph taken after the insertion. The cochleas were then histologically processed with the electrode array in situ, and the resulting sections were subsequently assessed for position of the electrode array as well as insertion-related intracochlear damage. Results: All perimodiolar electrode arrays were inserted deeper and showed trajectories that were generally closer to the modiolus compared with the standard electrode array. However, although the precurved array designs did not show significant insertion trauma, the method of insertion needed improvement. After insertion of the straight electrode array with positioner, signs of severe insertion trauma in the majority o fimplanted cochleas were found. Conclusions: Although it was possible to position the electrode arrays close to the modiolus, none of the three perimodiolar designs investigated fulfilled satisfactorily all three criteria of being easy, safe, and a traumatic to implant.
  • Item
    Thumbnail Image
    X-ray phase-contrast imaging
    XU, JIN ; Lawrence, D. ; Tykocinski, Michael. ; Duan, Y. Y. ; Saunders, E. ; Clark, Graeme M. ( 2001)
    Foreign language abstract
  • Item
    Thumbnail Image
    A comparative study of phase-contrast and conventional x-ray imaging in human temporal bone samples
    XU, JIN ; TYKOCINSKI, MICHAEL ; Saunders, E. ; Clark, Graeme M. ; Cowan, R. ( 2001)
    This study compared a new x-ray modality, phase-contrast radiography, with conventional radiography for imaging in human temporal bones and also investigated its potential application in the development of electrode arrays for advanced cochlear implants. Nucleus standard electrode arrays and peri-modiolar Contourn.4 electrode arrays were implanted into the cochleae of 10 human temporal bones. Both conventional and phase-contrast radiographs were taken of ~ach temporal bon~. The phase-contrast radiographs showed significant improvements over conventional radiographs in the detail of temporal bone images. These improvements included enhanced contrast at the edge of canal type features, inherent image magnification, higher spatial resolution, and ability to use detectors such as Imaging Plates. The results demonstrate that phase-contrast imaging can have important advantages in visualisation of anatomical details of both the inner ear structures and the microelectrode. It can provide a clearer definition of electrode location in relation to cochlear walls. This study demonstrates the feasibility of applying phase-contrast radiography to studies of the human temporal bone. However, its usefulness in the imaging of larger objects or perhaps even with patients in a clinical setting will require further investigation.
  • Item
    Thumbnail Image
    Application of advanced radiographic technology in cochlear implant research
    XU, JIN ; TYKOCINSKI, MICHAEL ; Saunders, E. ; Clark, Graeme M. ; Cowan, R. ( 2001)
    The effective development of peri-modiolar or other advanced electrode arrays for cochlear implants requires detailed analysis of the insertion procedure and electrode positioning in the cochlea. Routine x-ray techniques cannot provide sufficient detail to meet this need. A new micro-focus x-ray imaging system has been built for our research. The system consists of a x-ray tube with a sub 10-micron focal spot mounted below an adjustable work surface and an image intensifier placed approximately 100 cm above the x-ray aperture. A variety of intracochlear electrode arrays and human temporal bones were studied using this system. The micro-focus x-ray imaging system allows for micro-fluoroscopy to visualise the real time implantation procedure. It also enables capturing of images onto reusable phosphor imaging plates or films for subsequent viewing or analysis. Images are produced at up to 95 times magnification with superior resolution and enhanced contrast. This new radiographic technology plays an important role in development of safe and effective advanced intracochlear electrode arrays.
  • Item
    Thumbnail Image
    Post mortem study of the intracochlear position of the nucleus standard 22 electrode array
    XU, JIN ; Dahm, M. C. ; Tykocinski, Michael. ; Shepherd, Robert K. ; Clark, Graeme M. ( 2000)
    The final position of an intracochlear cochlear implant electrode array can vary depending on the pathology, the insertion technique used and the type of electrode array used. The distance of the electrodes from the target neural elements and the presence of intracochlear fibrous tissue or new bone formation are believed to affect the performance of the device. A post mortem study was conducted to assess these factors.
  • Item
    Thumbnail Image
    The role phase-contrast imagining in intra-cochlear electrode development
    Wilkins, S. ; Saudners, E. ; Clark, Graeme M. ; Cowan, R. ; XU, JIN ; Stevenson, A. W. ; Gao, D. ; Tykocinski, M. ; Cohen, L. ; Dahm, Markus ( 2000)
    In order to improve the design of intracochlear multichannel electrode arrays, it is fundamental that we have knowledge of the exact anatomical , position of the electrode within the scala of the cochlea. Currently, conventional skull radiography is still the mainstay of post-operative radiological assessment of electrode positioning. The present work investigates the use of phase-contrast radiography, a new x-ray modality, to provide improved imaging of the inner ear and the intracochlear electrode array in the human temporal bone (TB).
  • Item
    Thumbnail Image
    Phase-contrast radiography: a new x-ray technique for cochlear implant research
    XU, JIN ; Stevenson, A. W. ; Gao, D. ; Dahm, M. ; Wilkins, S. W. ; Clark, Graeme M. (Moduzzi Editore, 2000)
    This study examines the application of a new x-ray modality, phase contrast radiography, in temporal bone (TB) imaging. Preliminary results from TB samples have shown that phase-contrast imaging offers greater contrast for edge-type features and weakly absorbing soft-tissue resulting in improved visualization of anatomic details of inner ear and microelectrode structures. This is potentially valuable in the development of new electrode arrays for cochlear implants.
  • Item
    Thumbnail Image
    Intracochlear damage following insertion of the Nucleus 22 standard electrode array: a post mortem study of 14 implant patients
    Dahm, M. C. ; XU, JIN ; Tykocinski, Michael. ; Clark, Graeme M. ( 2000)
    The insertion of an intracochlear electrode array may cause trauma to cochlear structures which can result in degeneration of neural elements, jeopardizing the potential benefits of electrical stimulation. Safety studies for the assessment of trauma associated with the Nucleus 22 standard electrode array involved animal experiments as well as insertion studies in post mortem temporal bones. However, there are only few histological studies of temporal bones from deceased cochlear implant patients. A review of our temporal bone collection of implantees originating from a variety of centres has been conducted to evaluate the effects of electrode insertion trauma associated with the Nucleus 22 standard array.