Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    Thumbnail Image
    Psychophysical and speech perception studies: a case report on a binaural cochlear implant subject
    van Hoesel, R. J. M. ; Tong, Y. C. ; Hollow, R. D. ; Clark, Graeme M. ( 1993)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Comparison of half-band and full-band electrodes for intracochlear electrical stimulation
    Xu, Shi-Ang ; McAnally, Ken I. ; Xu, Jin. ; Clark, Graeme M. ( 1993)
    It was hypothesized that intracochlear stimulating electrodes oriented toward the modiolus would require a lower stimulus current to elicit a threshold neural response than longitudinal band electrodes. Electrically evoked auditory brain stem responses (EABRs) and electrode impedances were recorded with full-band and oriented half-band scala tympani electrodes in anesthetized, deafened cats. To elicit a threshold EABR, the stimulus current required for stimulation through half-band electrodes oriented toward the modiolus was not significantly different from the current required for stimulation through full-band electrodes. The impedances of full-band electrodes were significantly lower than those of half-band electrodes. Considering the significantly higher impedance and current density of half band electrodes in comparison to full-band electrodes, as well as the critical orientation of half-band electrodes during implantation, we believe that full-band electrodes have advantages over half-band electrodes for scala tympani implantation.
  • Item
    Thumbnail Image
    Evaluation of expandable leadwires for paediatric cochlear implants
    Xu, Shi-Ang. ; Shepherd, Robert K. ; Clark, Graeme M. ; Tong, Yit C. ; Williams, John F. ( 1993)
    The development of cochlear implants for use in very young children (1-2 years old) will require techniques designed to accommodate temporal bone growth. Previous anatomic studies have shown that the leadwire of a cochlear implant must be capable of expanding up to 20 mm between the round window and the implanted receiver-stimulator in response to skull growth. In the present study morphologic and biomechanical evaluation of five expandable leadwire designs was conducted following their implantation in young cats. Two helical shaped leadwire designs frequently exhibited extensive fibrous tissue adhesions and broke during long-term implantation. In contrast, thin, flexible Silastic envelopes were effective in minimizing tissue adhesions. Residual V- and Z-shaped leadwires, placed in these envelopes, showed little evidence of fibrous tissue adhesions following implantation periods of up to 2 years. Moreover, these leadwires readily expanded both during the growth of the animal and when biomechanical expansion studies performed at the completion of the implant period. These expandable leadwire designs appear to be appropriate candidates for use in pediatric cochlear implants.
  • Item
    Thumbnail Image
    Profound hearing loss in the cat following the single co-administration of kanamycin and ethacrynic acid
    Xu, Shi-Ang ; Shepherd, Robert K. ; Chen, Yin ; Clark, Graeme M. ( 1993)
    Co-administration of kanamycin (KA) with the loop diuretic ethacrynic acid (EA) has previously been shown to produce a rapid and profound hearing loss in guinea pigs. In the present study we describe a modified technique for developing a profound hearing loss in cats. By monitoring the animal's hearing status during the intravenous infusion of EA the technique minimizes the effects of individual variability to the drug regime. Seven cats received a subcutaneous injection of KA (300 mg/kg) followed by intravenous infusion of EA (1 mg/min). Click-evoked auditory brainstem responses (ABRs) were recorded to monitor the animal's hearing during the infusion. When the ABR thresholds rose rapidly to levels in excess of 90 dB SPL the infusion of EA was stopped. This occurred at EA doses of 10-25 mg/kg, indicating considerable individual variability to the deafening procedure. However, there was a strong negative correlation (r = - 0.93) between the EA dose and body weight which accounted for much of this variability. Subsequent ABR monitoring showed that this profound hearing loss was both bilateral and permanent. Significantly, blood urea and creatinine levels, monitored for periods of up to three days after the procedure, remained within the normal range. Furthermore, there was no clinical evidence of renal dysfunction as indicated by weight loss or oliguria. Cochlear histopathology, examined after a two months to three year survival period, showed an absence of all inner and outer hair cells in the majority of cochleas. The extent of loss of spiral ganglion cells was dependent on their distance from the round window and the period of survival following the deafening procedure. Clearly, the degeneration of spiral ganglion cells continued for several years following the initial insult. Finally, we observed no evidence of renal histopathology. In conclusion, the co-administration of KA and EA produces a profound hearing loss in cats without evidence of renal impairment. Monitoring the animal's hearing status during the procedure ensures that the dose of EA can be optimised for individual animals. Moreover, it may be possible to adapt this procedure to produce animal models with controlled high frequency hearing losses.
  • Item
    Thumbnail Image
    Effect of chronic electrical stimulation on cochlear nucleus neuron size in normal hearing kittens
    Ni, Daofeng ; Seldon, H. Lee. ; Shepherd, Robert K. ; Clark, Graeme M. ( 1993)
    Very young cochlear-implant candidates may have undetected islands of residual hearing. Would the maturation of these functioning auditory neurons be affected by chronic cochlear stimulation? This was tested by examining neuron sizes in the cochlear nuclei of young, normal hearing kittens with and without chronic cochlear stimulation. Six animals received bilateral intra-or extracochlear implants and were electrically stimulated unilaterally for periods of 1,000-1,500 hours. After sacrifice, cross-sectional areas of approximately 11,000 neuron somata in the cochlear nuclei were measured with an image-analysis system. There were statistically significant differences between stimulated and unstimulated nuclei, especially the posteroventral cochlear nucleus (PYCN), in individual cats, but the directions of the differences were inconsistent. Overall, there was no significant effect of electrical stimulation on soma size. These results indicate that chronic electrical stimulation of the auditory nerve has no positive or negative trophic effects on otherwise innervated, maturing cochlear nucleus neurons.
  • Item
    Thumbnail Image
    Radiologic evaluation of multichannel intracochlear implant insertion depth
    Marsh, Michael A. ; XU, JIN ; Blamey, Peter J. ; Whitford, Lesley A. ; Xu, Shi-Ang ; Silverman, Julianna M. ; Clark, Graeme, M. ( 1993)
    Postoperative plain film x-rays are necessary in all multichannel cochlear implant patients to confirm intracochlear position, detect possible electrode kinking, and provide a reference if postoperative slippage occurs. In addition, precise documentation of multichannel intracochlear electrode insertion depths is necessary for comparison of speech recognition results among patients and may be of use for future speech processing strategies. In the present study, a method has been devised, using a modified Stenver's view, to more accurately document insertion depths of the electrode array and location of individual electrodes on 50 multichannel cochlear implant patients. Surgical estimates of insertion depth are shown to have great variability in regard to distance along the basilar membrane when compared with x-ray documentation. Additionally, there is preliminary evidence that insertion depth, as determined by x-ray studies, has a strong correlation with open-set speech discrimination.
  • Item
    Thumbnail Image
    A "Combionic Aid": Combined speech processing for a cochlear implant in one ear and speech processing hearing aid in the other ear [Abstract]
    Dooley, Gary J. ; Blamey, Peter J. ; Seligman, Peter M. ; Clark, Graeme M. ( 1993)
    Independent use of a cochlear implant in one ear and a hearing aid in the other is not acceptable for many implant users with some residual hearing. Psychophysical evidence suggests that there are substantial interactions between acoustic and electrical signals including masking and loudness summation. These effects may contribute to the difficulty in using two independent devices and it is desirable to control the parameters of the electrical and acoustical signals far more accurately than is possible with two independent devices with separate microphones. In order to achieve this control we have developed a Combionic aid incorporating an implant and an 'in1planlcompatible' hearing aid controlled from the same speech processor. The new processor is particularly flexible and can implement a wide variety of speech processing strategies for combined acoustic and electrical stimulation. A benchtop prototype has been tested with five patients using a range of different speech tests. In general, patients do better when they use acoustic and electrical information simultaneously than they do with either alone. Some patients on some tests perform significantly better with the bimodal aid than they do with independent hearing aids and implant processors worn together. Wearable devices have now been built and evaluations of these devices are continuing.
  • Item
    Thumbnail Image
    Combined electrical and acoustical stimulation using a bimodal prosthesis
    Dooley, Gary J. ; Blamey, Peter J. ; Seligman, Peter M. ; Alcantara, Joseph I. ; Clark, Graeme M. ; Shallop, Jon K. ; Arndt, Patti ; Heller, James W. ; Menapace, Christine M. ( 1993)
    A new device incorporating a cochlear implant speech processor and a speech-processing hearing aid for the un-implanted ear has been designed and tested with four severely hearing-impaired patients. The aim of the device is to provide a more acceptable and effective combination of electrical and acoustic signals to the two ears. When used monaurally, and binaurally in conjunction with the cochlear implant, the speech-processing hearing aid mean scores for open-set sentences, words, and consonants were as good as or better than the mean scores for the patients' own conventional hearing aids. Some patients improved much more than did others. Although not conclusive, these results are encouraging, especially as they were achieved with a laboratory prototype that did not allow the patients to become accustomed to the processor in everyday situations.
  • Item
    Thumbnail Image
    Preliminary speech perception results for children with the 22-electrode Melbourne/ cochlear hearing prosthesis
    Cowan, R. S. C. ; Dowell, R. C. ; Pyman, B. C. ; Dettman, S. J. ; Dawson, P. W. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Clark, Graeme M. ( 1993)
    The 22-electroce cochlear prosthesis developed by the University of Melbourne and Cochlear Pty. Ltd. has been shown to provide significant speech perception benefits to profoundly deafened adults. More recently, use of an improved Multipeak encoding strategy has significantly improved speech perception performance both in quiet and in noise. Benefits to speech perception in children have not as yet been fully documented, in part due to the shorter history of implant use in children and the smaller overall number of children implanted as compared with adults. The first implantation of the 22-electrode cochlear prosthesis in a child was carried out in Melbourne in January of 1985. In Melbourne, a 5-year-old child was operated on in April 1986, and a first congenitally deaf child in April 1987. The age of implantation has been progressively reduced, with the first 2-year-old child implanted in Melbourne in 1990. As at January 1992, approximately 1,200 children (under 18 years of age inclusive) have been implanted worldwide with the 22-electrode cochlear prosthesis. Of this number, approximately 50% are under the age of 6 years. The age of the child, aetiology of the hearing loss, age at onset and duration of the hearing loss, education program attended both prior to and subsequent to implantation, and parental motivation to assist in habilitation are all factors which may affect an individual child's development and progress with the device. Evaluation of performance in children is complicated by a number of issues, including the effects of delayed speech and language development, and the ability of individual children to perform auditory tests. The measure of performance chosen for any evaluation will also reflect the interests of the particular clinician. For example, effects of device use on speech production may be of interest to the speech therapist, whereas educational progress will be of primary importance to the teacher of an implanted child. However, in choosing an appropriate evaluation test to measure progress woth the cochlear prosthesis, it is vital to realize that all measures such as effects of device use on speech production, educational progress, development of language, and effects on social and communication skills depend on the child being able to accurately perceive speech information through her/his device.
  • Item
    Thumbnail Image
    The University of Melbourne/nucleus multiple-channel cochlera implant
    Clark, Graeme M. (Australian Acoustical Society, 1993)
    The history of the development of the multiple-channel cochlear implant by a research team at the University of Melbourne, in collaboration with Nucleus Ltd, is reviewed and related to various strategies for speech processing and cochlear stimulation for the profoundly deaf. The results of clinical trials are summarised and evaluated.