Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Cochlear implants in children
    Clark, Graeme M. ( 1995)
    Cochlear implants are devices that are used to artificially excite hearing nerves with patterns of stimulation that convey speech information and environmental sounds when a person's inner ear has been destroyed by disease or not developed at birth. In this situation they cannot benefit from the amplification of sound with a hearing aid.
  • Item
    Thumbnail Image
    The progress of children using the multichannel cochlear implant in Melbourne
    Cowan, R. S. C. ; Dowell, R. C. ; Hollow, R. ; Dettman, S. J. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Galvin, K. L. ; Webb, R. C. ; Pyman, B. C. ; Cousins, V. C. ; Clark, Graeme M. ( 1995)
    Multi-channel cochlear implantation in children began in Australia in 1985 and there are now close to 4000 profoundly deaf children and adolescents using the Australian implant system around the world. The aim of the implant procedure is to provide adequate hearing for speech and language development through auditory input. This contrasts with the situation for adults with acquired deafness where the cochlear implant aims to restore hearing for someone with well-developed auditory processing and language skills. As with adults, results vary over a wide range for children using the Multi-channel implant. Many factors have been suggested that may contribute to differences in speech perception for implanted children. In an attempt to better understand these factors, the speech perception results for children implanted in Melbourne were reviewed and subjected to statistical analysis. This has indicated that the amount of experience with the implant and the length of sensory deprivation are strongly correlated with perceptual results. This means that younger children are likely to perform better with an implant and that a number of years of experience are required for children to reach their full potential. The results have also indicated that educational placement and management play a crucial role in children reaching their potential. Overall, 60% of the children and adolescents in the study have reached a level of open-set speech understanding using the cochlear implant without lipreading.
  • Item
    Thumbnail Image
    Cochlear implants in children: the value of cochleostomy seals in the prevention of labyrinthitis following pneumococcal otitis media
    Dahm, M. C. ; Webb, R. L. ; Clark, Graeme M. ; Franz, B. K-H. ; Shepherd, R. K. ; Burton, M. J. ; ROBINS-BROWNE, R. ( 1995)
    Cochlea implantation at an early age is important in rehabilitating profoundly hearing impaired children. Given the incidence of pneumococcal otitis media in young children, there has been concern that cochlear implantation could increase the possibility of otitis media, leading to labyrinthitis in this age group. Clinical experience has not indicated an increase in the frequency of otitis media and labyrinthitis in implanted adults or children over two years. However, labyrinthitis has occurred in implanted animals with otitis media. In order to assess the impact of cochlear implants on the occurrence of labyrinthitis, pneumococcal otitis media was induced in 21 kittens. Thirty-two kitten cochleas were implanted, of which 9 had a fascial graft and 9 a Gelfoam® graft. Nine control cochleas were unimplanted. Labyrinthitis occurred in 44% of unimplanted controls. 50% of implanted ungrafted cochleas, and 6% of implanted grafted cochleas. There was no statistically significant difference between the incidence of labyrinthitis in the implanted cochleas and the unimplanted controls. However there was a statistically significant difference between the ungrafted and grafted cochleas, but not between the two types of graft.
  • Item
    Thumbnail Image
    Vowel imitation task: results over time for 28 cochlear implant children under the age of eight years
    Dettman, S. J. ; Barker, E. J. ; Dowell, R. C. ; Dawson, P. W. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    With increasing numbers of implanted children under the age of 4 years, numerous researchers have reminded us of the need for valid, sensitive, and reliable tests of developing speech perception.1,2 In addition to studies of the efficacy of implanted prostheses, there is a need to investigate the many variables that influence children's communicative performance, such as changes in speech-coding strategy, updated speech-processing systems, the effects of various training regimens, and the selection of educational and communication modes.
  • Item
    Thumbnail Image
    Habilitation issues in the management of children using the cochlear multiple-channel cochlear prosthesis
    Cowan, Robert S. C. ; Barker, Elizabeth J. ; Dettman, Shani J. ; Blamey, Peter J. ; RANCE, GARY ; Sarant, Julia Z. ; Galvin, Karyn L. ; Dawson, Pam W. ; Hollow, Rod ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. (Wien, 1994)
    Since 1985, a significant proportion of patients seen in the Melbourne cochlear implant clinic have been children. The children represent a diverse population, with both congenital and acquired hearing-impairments, a wide-range of hearing levels pre-implant, and an age range from 2 years to 18 years. The habilitation programme developed for the overall group must be flexible enough to be tailored to the individual needs of each child, and to adapt to the changing needs of children as they progress. Long-term data shows that children are continuing to show improvements after 5-7 years of device use, particularly in their perception of open-set words and sentences. Habilitation programs must therefore be geared to the long-term needs of children and their families. Both speech perception and speech production need to be addressed in the specific content of the habilitation program for any individual child. In addition, for young children, the benefits of improved speech perception should have an impact on development of speech and language, and the focus of the programme for this age child will reflect this difference in emphasis. Specific materials and approaches will vary for very young children, school-age and teenage children. In addition, educational setting will have a bearing on the integration of listening and device use into the classroom environment.
  • Item
    Thumbnail Image
    Cochlear implantation in young children: histological studies on head growth, leadwire design, and electrode fixation in the monkey model
    Burton, M. J. ; Shepherd, R. K. ; Xu, S. A. ; Xu, J. ; Franz, B. K-H. G. ; Clark, Graeme M. ( 1994)
    For safe cochlear implantation in children under 2 years of age, the implant assembly must not adversely affect adjacent tissues or compromise head growth. Furthermore, growth changes and tissue responses should not impair the function of the device. Dummy receiver-stimulators, interconnect plugs, and leadwire-lengthening systems were implanted for periods of 36 months in the young monkey to effectively model the implantation of the young child. The results show that implanting a receiver-stimulator package has no adverse effects on skull growth or the underlying central nervous system. The system for fixing the electrode at the fossa incudis proved effective. There was marked osteoneogenesis in the mastoid cavity, resulting in the fixation of the leadwire outside the cochlea. This study provides evidence for the safety of cochlear implantation in young subjects.
  • Item
    Thumbnail Image
    Cochlear implants in children, adolescents, and prelinguistically deafened adults: speech perception
    Dawson, Pam W. ; Blamey, Peter J. ; Rowland, Louise C. ; Dettman, Shani J. ; Clark, Graeme M. ; Busby, Peter A. ; Brown, Alison M. ; Dowell, Richard C. ; Rickards, Field W. ( 1992)
    A group of 10 children, adolescents, and prelinguistically deafened adults were implanted with the 22-electrode cochlear implant (Cochlear Ply Ltd) at the University of Melbourne Cochlear Implant Clinic and have used the prosthesis for periods from 12 to 65 months. Postoperative performance on the majority of closed-set speech perception tests was significantly greater than chance, and significantly better than preoperative performance for all of the patients. Five of the children have achieved substantial scores on open-set speech tests using hearing without lipreading. Phoneme scores in monosyllabic words ranged from 30% to 72%; word scores in sentences ranged from 26% to 74%. Four of these 5 children were implanted during preadolescence (aged 5:5 to 10:2 years) and the fifth, who had a progressive loss, was implanted during adolescence (aged 14:8 years). The duration of profound deafness before implantation varied from 2 to 8 years. Improvements were also noted over postoperative data collection times for the younger children. The remaining 5 patients who did not demonstrate open-set recognition were implanted after a longer duration of profound deafness (aged 13:11to 20:1 years). The results are discussed with reference to variables that may affect implant performance, such as age at onset of loss, duration of profound loss, age at implantation, and duration of implantation. They are compared with results for similar groups of children using hearing aids and cochlear implants.
  • Item
    Thumbnail Image
    Performance benefits and costs for children using cochlear implants and hearing aids [Abstract]
    Barker, Elizabeth ; Wright, Maree ; Godwin, Genevieve ; Hollow, Rod ; Rehn, Chris ; Gibson, William P.R. ; Clark, Graeme M. ; Cowan, Robert S. C. ; Dowell, Richard C. ; King, Alison ; Rennie, Maree ; Dettman, Shani J. ; Everingham, Colleen ( 1998)
    The value of cochlear implants as an established clinical option for profoundly hearing impaired adults and children has been supported by significant research results over a number of years which has clearly established the benefits available (U.S. National Institutes of Health Consensus Statement 1995). Benefit has traditionally been considered as the direct impact of the cochlear implant procedure on speech perception, or in the case of children, on the use of that auditory information to develop understandable speech and to acquire a knowledge of language. As a consequence of continuing research to improve hardware and speech processing strategies, mean scores on open-set tests of monosyllables or sentence materials for implanted adults using the cochlear implant alone without lipreading have continued to show an upwards trend. In response to the increased mean scores in quiet, perception tests in background noise are now being used as a more accurate direct measure of the potential benefits of cochlear implants to severely-to-profoundly hearing-impaired candidates. Consideration should also be given to indirect benefits, such as reduction in the stress of listening and lipreading, improved performance at work, enhanced opportunity to maintain speech, or in children to develop speech which is understandable to the general community, and the social effects of reducing the isolating effects of profound deafness. Measurement of indirect benefit can be combined with an analysis of the costs of the procedure, enabling evaluation of the implant procedure from a cost-utility standpoint, and a comparison of outcomes using other technologies such as hearing aids. This study will present data on direct and indirect benefits for hearing-impaired children using Nucleus cochlear implant systems, and compare this data with benefits shown for similarly hearing impaired children using hearing aids. The significance of these results to cost-effective delivery of services will be discussed.
  • Item
    Thumbnail Image
    Speech perception benefits for implanted children with preoperative residual hearing [Abstract]
    Hollow, R. ; Rance, G. ; Dowell, R.C. ; Pyman, B. ; Clark, Graeme M. ; Cowan, R. S. C. ; Galvin, K. L. ; Barker, E. J. ; Sarant, J. Z. ; Dettman, S. ( 1995)
    Since the implantation of the first children with the Nucleus 22-channel cochlear prosthesis in Melbourne in 1985, there has been rapid expansion in the number of implanted children world-wide. Improved surgical technique and experience in paediatric assessment and management have contributed to a trend to implant very young children. At the same time there has also been continuing development of improved speech processing strategies resulting in greater speech perception benefits. In the Melbourne program, over 60% of children obtain significant scores on open-set word and sentence tests using their cochlear implant alone without the aid of lipreading. As parents and professionals have become aware of these improved benefits to speech perception benefits in profoundly deaf children, there have been requests to consider implanting severely-to-profoundly deaf children. In these children with higher levels of residual hearing, only those children with poorer-than-expected performance on speech perception tests using hearing aids have been considered for surgery. A number of such cases have now been implanted in the Melbourne program. The speech perception benefits for this group are reported and are being compared with benefits for the profoundly deaf group of children.
  • Item
    Thumbnail Image
    Speech perception benefits for children using the Speak speech processing strategy in quiet and noise [Abstract]
    Whitford, L.A. ; Dowell, R.C. ; Brown, C. ; Gibson, W.P.R. ; Clark, Graeme M. ; Cowan, R. S. C. ; Galvin, K. L. ; Barker, E. J. ; Sarant, J. Z. ; Shaw, S. ; Everingham, C. ( 1995)
    The Speak speech processing strategy, based on the Spectral Maxima Speech Processor (SMSP) developed at the University of Melbourne, has now been implemented in the Spectra 22 speech processor developed by Cochlear Pty Limited, and clinical trials of both patients changing from the previous Multipeak strategy to Speak and patients starting up with. Speak have been conducted. Results in adult patients changing to Speak have shown significant improvements in speech perception in quiet and particularly in background noise as compared with Multipeak. Preliminary studies with children changing from Multipeak to Speak strategy, measured over a 10 month period, have also shown significant benefits from use of the Speak scheme in both quiet and noisy test situations. Results of follow up studies of these children after more than one year experience with the Speak processing strategy are presented. Statistical analysis of performance over time suggests that an increase in benefit is observed in children after additional experience with the Speak processing strategy. In addition, results for children who have used only the Speak processing strategy from the time of implantation are also presented. The results confirm that the Speak processing strategy provides significant benefits in quiet, and particularly in the presence of background noise for both groups of patients.