Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    The University of Melbourne Department of Otolaryngology
    Clark, Graeme M. ( 1995)
    The University of Melbourne Department of Otolaryngology runs a general ENT Clinic as well as a Cochlear Implant Clinic. It forms the core of a Multicentre research group for deafness research, is heavily involved in teaching and education, and includes a School of Audiology. This article presents an overview of the activities of the Department.
  • Item
    Thumbnail Image
    Multichannel cochlear implant speech processing: further variations of the spectral maxima sound processor strategy
    Vandali, A. E. ; Harrison, J. M. ; Huigen, J. M. ; Plant, K. ; Clark, Graeme M. ( 1995)
    The spectral maxima sound processor (SMSP) was first developed at the University of Melbourne in 1989. A full description of the SMSP has been given by McDermott et al.1 In short, the SMSP utilizes an ear-level microphone to measure acoustic sound pressure. A 16-channel band-pass filter bank is used to analyze the sound spectrum at discrete time intervals. Each of the 16 filters is assigned to one of the 16 intracochlear electrodes according to frequency. Within each time interval the six channels with the largest band-pass filter amplitudes are selected and used to stimulate six corresponding electrodes in quick succession. The current implementation of the SMSP2 differs from the original in that a digital signal processor is used in place of the analog filter bank and the microprocessor. The filter bank has been implemented with a discrete Fourier transform. Also, the input dynamic range has been improved by increasing the resolution of the analog-to-digital converter from 8 to 12 bits.
  • Item
    Thumbnail Image
    Vowel imitation task: results over time for 28 cochlear implant children under the age of eight years
    Dettman, S. J. ; Barker, E. J. ; Dowell, R. C. ; Dawson, P. W. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    With increasing numbers of implanted children under the age of 4 years, numerous researchers have reminded us of the need for valid, sensitive, and reliable tests of developing speech perception.1,2 In addition to studies of the efficacy of implanted prostheses, there is a need to investigate the many variables that influence children's communicative performance, such as changes in speech-coding strategy, updated speech-processing systems, the effects of various training regimens, and the selection of educational and communication modes.
  • Item
    Thumbnail Image
    Speech perception in children using the advanced Speak speech-processing strategy
    Cowan, R. S. C. ; Brown, C. ; Whitford, L. A. ; Galvin, K. L. ; Sarant, J. Z. ; Barker, E. J. ; Shaw, S. ; King, A. ; Skok, M. ; Seligman, P. M. ; Dowell, R. C. ; Everingham, C. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1995)
    The Speak speech-processing strategy, developed by the University of Melbourne and commercialized by Cochlear Pty Limited for use in the new Spectra 22 speech processor, has been shown to provide improved speech perception for adults in both quiet and noisy situations. The present study evaluated the ability of children experienced in the use of the Multipeak (Mpeak) speech-processing strategy (implemented in the Nucleus Minisystem-22 cochlear implant) to adapt to and benefit from the advanced Speak speech-processing strategy (implemented in the Nucleus Spectra 22 speech processor). Twelve children were assessed using Mpeak and Speak over a period of 8 months. All of the children had over 1 year's previous experience with Mpeak, and all were able to score significantly on open-set word and sentence tests using the cochlear implant alone. Children were assessed with both live-voice and recorded speech materials, including Consonant-Nucleus-Consonant monosyllabic words and Speech Intelligibility Test sentences. Assessments were made in both quiet and in noise. Assessments were made at 3-week intervals to investigate the ability of the children to adapt to the new speech-processing strategy. For most of the children, a significant advantage was evident when using the Speak strategy as compared with Mpeak. For 4 of the children, there was no decrement in speech perception scores immediately following fitting with Speak. Eight of the children showed a small (10% to 20%) decrement in speech perception scores for between 3 and 6 weeks following the changeover to Speak. After 24 weeks' experience with Speak, 11 of the children had shown a steady increase in speech perception scores, with final Speak scores higher than for Mpeak. Only 1 child showed a significant decrement in speech perception with Speak, which did not recover to original Mpeak levels.
  • Item
    Thumbnail Image
    The spectral maxima sound processor: recent findings in speech perception and psychophysics
    McKay, Colette M. ; McDermott, Hugh J. ; Vandali, Andrew E. ; Clark, Graeme M. (Wien, 1994)
    The Spectral Maxima Sound Processor (SMSP) was developed at the University of Melbourne for use with the Mini System 22 implant manufactured by Cochlear Pty Ltd. The SMSP has been shown in recent studies to provide improved speech perception to implantees when compared to the currently commercially available processor for this implant (the MSP (MULTIPEAK) processor). In the first of three experiments, the effect on speech perception of increasing the rate of stimulation of the SMSP and of increasing the number of electrodes activated in each stimulation cycle was studied. It was found that these parameter changes made little difference to speech perception in quiet but both changes were advantageous for some subjects when listening in noise. The second and third experiments investigated psychophysically the effects of two aspects of the SMSP strategy which differ from previous processors for this implant. In the second experiment, it was found that concurrent stimulation of two adjacent or nearby electrodes evoked a pitch which was intermediate to that of either electrode. This may explain, in part, the better discrimination of vowel formants by users of the SMSP. In the third experiment, it was found that a pitch related to the modulation frequency was evoked by amplitude-modulating a constant rate stimulus, provided that the rate of stimulation was sufficiently high (four times the modulation frequency) or a multiple of the modulation frequency. This result may explain the equal ability of SMSP and MSP users to perceive speaker differences and intonation patterns, even though the rate of stimulation is constant In the SMSP.
  • Item
    Thumbnail Image
    Speech perception benefits for implanted children with preoperative residual hearing [Abstract]
    Hollow, R. ; Rance, G. ; Dowell, R.C. ; Pyman, B. ; Clark, Graeme M. ; Cowan, R. S. C. ; Galvin, K. L. ; Barker, E. J. ; Sarant, J. Z. ; Dettman, S. ( 1995)
    Since the implantation of the first children with the Nucleus 22-channel cochlear prosthesis in Melbourne in 1985, there has been rapid expansion in the number of implanted children world-wide. Improved surgical technique and experience in paediatric assessment and management have contributed to a trend to implant very young children. At the same time there has also been continuing development of improved speech processing strategies resulting in greater speech perception benefits. In the Melbourne program, over 60% of children obtain significant scores on open-set word and sentence tests using their cochlear implant alone without the aid of lipreading. As parents and professionals have become aware of these improved benefits to speech perception benefits in profoundly deaf children, there have been requests to consider implanting severely-to-profoundly deaf children. In these children with higher levels of residual hearing, only those children with poorer-than-expected performance on speech perception tests using hearing aids have been considered for surgery. A number of such cases have now been implanted in the Melbourne program. The speech perception benefits for this group are reported and are being compared with benefits for the profoundly deaf group of children.
  • Item
    Thumbnail Image
    Speech perception benefits for children using the Speak speech processing strategy in quiet and noise [Abstract]
    Whitford, L.A. ; Dowell, R.C. ; Brown, C. ; Gibson, W.P.R. ; Clark, Graeme M. ; Cowan, R. S. C. ; Galvin, K. L. ; Barker, E. J. ; Sarant, J. Z. ; Shaw, S. ; Everingham, C. ( 1995)
    The Speak speech processing strategy, based on the Spectral Maxima Speech Processor (SMSP) developed at the University of Melbourne, has now been implemented in the Spectra 22 speech processor developed by Cochlear Pty Limited, and clinical trials of both patients changing from the previous Multipeak strategy to Speak and patients starting up with. Speak have been conducted. Results in adult patients changing to Speak have shown significant improvements in speech perception in quiet and particularly in background noise as compared with Multipeak. Preliminary studies with children changing from Multipeak to Speak strategy, measured over a 10 month period, have also shown significant benefits from use of the Speak scheme in both quiet and noisy test situations. Results of follow up studies of these children after more than one year experience with the Speak processing strategy are presented. Statistical analysis of performance over time suggests that an increase in benefit is observed in children after additional experience with the Speak processing strategy. In addition, results for children who have used only the Speak processing strategy from the time of implantation are also presented. The results confirm that the Speak processing strategy provides significant benefits in quiet, and particularly in the presence of background noise for both groups of patients.
  • Item
    Thumbnail Image
    Results of multichannel cochlear implantation in very young children [Abstract]
    Galvin, K. ; Clark, Graeme M. ; Dettman, S. ; Dowell, R. ; Barker, E. ; Rance, G. ; Hollow, R. ; Cowan, R. ( 1995)
    Most researchers and clinicians working in the cochlear implant field have assumed that profoundly deaf children will have a better prognosis in terms of speech perception, speech production and language development. if implanted at as young an age as possible. However, it has been difficult to gather direct evidence for this hypothesis due to the problems in assessing children under the age of five years with formal tests. Recent results with older children have supported the view that early implantation may provide the optimal outcome in most cases. The implantation of very young children raises two areas of concern that do not apply in adults and older children: accurate assessment of degree of hearing loss and auditory potential; and postoperative assessment of outcomes. This paper will describe research results from the University of Melbourne which address these issues and present results for children implanted as young as eighteen months of age.
  • Item
    Thumbnail Image
    Speech perception benefits for children using an advanced cochlear implant speech processing strategy in quiet and in noise [Abstract]
    Dettman, Shani J. ; Skok, Marissa ; Dowell, Richard C. ; Clark, Graeme M. ; Cowan, Robert S. C. ; Whitford, Lesley A. ; Sarant, Julia Z. ; Galvin, Karyn L. ; Barker, Elizabeth J. ; King, Alison ( 1994)
    A new speech processing strategy (SPEAK) has been developed by the University of Melbourne and Cochlear Pty Ltd for use with the Nucleus 22-channel electrode array. In this strategy, 20 programmable filters are repetitively scanned at an average rate of 250Hz and the largest spectral components or maxima are selected from the incoming speech signal. This new speech processing strategy has been shown to provide significantly improved benefits in adult implant patients, particularly in the presence of background noise. This report presents data of a preliminary paediatric clinical trial of the new SPEAK speech processing strategy.