Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 90
  • Item
    Thumbnail Image
    A speech processing strategy for an electro-tactile vocoder [Abstract]
    MacLeod, G. A. ; Clark, Graeme M. ; Pengilley, C. J. ( 1980)
    Past attempts at using the skin for recognition of tactile patterns derived from acoustic speech signals have largely been unsuccessful for perception of running speech. Problems facing researchers in this field include: frequency discrimination, especially for electrical stimulation, temporal and spatial resolution, real time speech processing and tactile pattern configuration strategies. It is considered that recent developments in speech processing which allow real time estimation of formant frequencies and vocal tract area functions will enable a successful speech aid to be developed. Based on results of the Tadoma (or Hofgaard) Method, in which speech is perceived by the deaf-blind using tactile and kinesthetic senses to determine movements of a speaker's articulators, a model is evaluated which enables a tactile display of articulatry information derived from parameters extracted from the speech signal by real time speech processing. Psychophysical measurements of percepts of computer derived patterns were carried out concentrating in particular on patterns more likely to be important for phonemic and speech discrimination. In this way it is hoped to validate the model as a useful speech aid for the profoundly and partially deaf.
  • Item
    Thumbnail Image
    A multiple-electrode cochlear implant
    Clark, Graeme M. ; Tong, Y. C. ; Bailey, Q. R. ; Black, R. C. ; Martin, L. F. ; Millar, J. B. ; O'Loughlin B. J. ; Patrick, J. F. ; Pyman, B. C. ( 1978)
    Interest in artificially stimulating the auditory nerve electrically for sensori-neural deafness was first sparked off by Volta in the 18th century. Count Volta, who was the first to develop the electric battery, connected up a number of his batteries to two metal rods which he inserted into his ears. Having placed the rods in his ears he pressed the switch and received "une secousse dans la tete" and perceived a noise like "the boiling of thick soup".
  • Item
    Thumbnail Image
    Hearing restoration with the multichannel auditory brainstem implant
    Briggs, R. J. S. ; Kaye, A. H. ; Dowell, R. C. ; Hollow, R. D. ; Clark, Graeme M. ( 1997)
    Restoration of useful hearing is now possible in patients with bilateral acoustic neuromas by direct electrical stimulation of the cochlear nucleus. Our first experience with the Multichannel Auditory Brainstem Implant is reported. A forty four year old female with bilateral acoustic neuromas and a strong family history of Neurofibromatosis Type II presented with profound bilateral hearing impairment. Translabyrinthine removal of the right tumour was performed with placement of the Nucleus eight electrode Auditory Brainstem Implant. Intraoperative electrically evoked auditory brainstem response monitoring successfully confirmed placement over the cochlear nucleus. Postoperatively, auditory responses were obtained on stimulation of all electrodes with minimal non-auditory sensations. The patient now receives useful auditory sensations using the "SPEAK" speech processing strategy. Auditory brainstem Implantation should be considered for patients with Neurofibromatosis Type II in whom hearing preservation tumour removal is not possible.
  • Item
    Thumbnail Image
    Speech perception as a function of electrical stimulation rate: using the nucleus 24 cochlear implant system
    Vandali, Andrew E. ; Whitford, Lesley A. ; Plant, Kerrie L. ; Clark, Graeme M. ( 2000)
    Objective: To investigate the effect of varying electrical stimulation rate on speech comprehension by cochlear implant users, while keeping the number of stimulated channels constant. Design: Three average rates of electrical stimulation,250, 807, and 1615 pulses per second per channel (pps/ch), were compared using a speech processing strategy that employed an electrode selection technique similar to that used in the Spectral Maxima Sound Processor strategy (McDermott, McKay,& Vandali, 1992; McDermott & Vandali, Reference Note 1; McKay, McDermott, Vandali, & Clark, 1991)and the Spectral Peak strategy (Skinner et al., 1994;Whitford et al., 1995). Speech perception tests with five users of the Nucleus 24 cochlear implant system were conducted over a 21-wk period. Subjects were given take-home experience with each rate condition. A repeated ABC evaluation protocol with alternating order was employed so as to account for learning effects and to minimize order effects. Perception of open-set monosyllabic words in quiet and open-set sentences at signal to noise ratios ranging from +20 to 0 dB, depending on the subject’s ability, were tested. A comparative performance questionnaire was also administered. Results: No statistical differences in group performance between the 250 and 807 pps/ch rates were observed in any of the speech perception tests. However, significantly poorer group performance was observed for the 1615 pps/ch rate for some tests due predominantly to the results of one subject. Analysis of individual scores showed considerable variation across subjects. For some subjects, one or more of the three rate conditions evaluated provided benefits on some speech perception tasks. The results of the comparative performance questionnaire indicated a preference for the 250 and 807pps/ch rates over the 1615 pps/ch rate for most listening situations. Conclusions: For the speech processing strategy, implant system, and subjects evaluated in this study, the group results indicated that the use of electrical stimulation rates higher than 250 pps/ch (up to 1615 pps/ch) generally provided no significant improvement to speech comprehension. However, individual results indicated that perceptual.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study
    XU, JIN ; Shepherd, Robert K. ; Millard, Rodney E. ; Clark, Graeme M. ( 1997)
    A major factor associated with recent improvements in the clinical performance of cochlear implant patients has been the development of speech-processing strategies based on high stimulation rates. While these processing strategies show clear clinical advantage, we know little of their long-term safety implications. The present study was designed to evaluate the physiological and histopathological effects of long-term intracochlear electrical stimulation using these high rates. Thirteen normal-hearing adult cats were bilaterally implanted with scala tympani electrode arrays and unilaterally stimulated for periods of up to 2100 h using either two pairs of bipolar or three monopolar stimulating electrodes. Stimuli consisted of short duration (25-50 µs/phase) charge-balanced biphasic current pulses presented at 1000 pulses per second (pps) per channel for monopolar stimulation, and 2000 pps/channel for bipolar stimulation. The electrodes were shorted between current pulses to minimize any residual direct current, and the pulse trains were presented using a 50% duty cycle (500 ms on; 500 ms oft) in order to simulate speech. Both acoustic (ABR) and electrical (EABR) auditory brainstem responses were recorded periodically during the chronic stimulation program, All cochleas showed an increase in the click-evoked ABR threshold following implant surgery; however, recovery to near-normal levels occurred in approximately half of the stimulated cochleas 1 month post-operatively. The use of frequency-specific stimuli indicated that the most extensive hearing loss generally occurred in the high-frequency basal region of the cochlea (12 and 24 kHz) adjacent to the stimulating electrode. However, thresholds at lower frequencies (2, 4 and 8 kHz), appeared at near-normal levels despite long-term electrode implantation and electrical stimulation. Our longitudinal EABR results showed a statistically significant increase in threshold in nearly 40% of the chronically stimulated electrodes evaluated; however, the gradient of the EABR input/output (I/O) function (evoked potential response amplitude versus stimulus current) generally remained quite stable throughout the chronic stimulation period. Histopathological examination of the cochleas showed no statistically significant difference in ganglion cell densities between cochleas using monopolar and bipolar electrode configurations (P = 0.67), and no evidence of cochlear damage caused by high-rate electrical stimulation when compared with control cochleas. Indeed, there was no statistically significant relationship between spiral ganglion cell density and electrical stimulation (P = 0.459), or between the extent of loss of inner (IHC, P = 0.86) or outer (OHC, P=0.30) hair cells and electrical stimulation. Spiral ganglion cell loss was, however, influenced by the degree of inflammation (P=0.016) and electrode insertion trauma. These histopathological findings were consistent with the physiological data. Finally, electrode impedance, measured at completion of the chronic stimulation program, showed close correlation with the degree of tissue response adjacent to the electrode array. These results indicated that chronic intracochlear electrical stimulation, using carefully controlled charge-balanced biphasic current pulses at stimulus rates of up to 2000 pps/channel, does not appear to adversely affect residual auditory nerve elements or the cochlea in general. This study provides an important basis for the safe application of improved speech-processing strategies based on high-rate electrical stimulation.
  • Item
    Thumbnail Image
    Acoustic and electric forward-masking of the auditory nerve compound action potential: evidence for linearity of electro-mechanical transduction
    McAnally, Ken I. ; Brown, Mel ; Clark, Graeme M. ( 1997)
    We investigated electro-mechanical transduction within the cochlea by comparing masking of the auditory nerve compound action potential (CAP) by acoustical and electrical maskers. Forward-masking of the CAP reflects the response to the masker of the cochlear location tuned to the probe. Electrical stimulation was delivered through bipolar stimulating electrodes within the basal turn of the scala tympani. The growth of masking of high-frequency probes which excite cochlear locations close to the stimulating electrodes was similar for both acoustic and electrical maskers, suggesting a linear transduction of electrical energy to mechanical energy. Exposure to intense acoustic stimulation caused an equal loss of sensitivity to acoustic and electrical maskers. Masking of lower-frequency probes by electrical maskers increased rapidly with masker current, suggesting the direct electrical stimulation of neural elements. This masking was reduced by the administration of strychnine suggesting a contribution by the efferents towards masking of these low-frequency probes.
  • Item
    Thumbnail Image
    Histological and physiological effects of the central auditory prosthesis: surface versus penetrating electrodes
    Lui, Xuguang ; McPhee, Greg ; Seldon, H. Lee ; Clark, Graeme M. ( 1997)
    Unavailable due to copyright.
  • Item
    Thumbnail Image
    Electrical stimulation of the auditory nerve with a cochlear implant and the temporal coding of sound frequencies: a brief review
    Clark, Graeme M. ( 1997)
    There is considerable evidence that the brain translates (encodes) the frequency of a sound into both place of excitation (place encoding), and the pattern of intervals between action potentials (temporal encoding). Furthermore, temporal encoding is now thought to be due to a temporal as well as spatial pattern of action potentials in a small group of neurons. This pattern needs to be reproduced with a cochlear implant for improved speech processing. Our recent research has also demonstrated that the timing of excitatory postsynaptic potentials seen with intracellular recordings from brain cells, rather than extracellularly recorded action potentials, correlates better with the frequency of sound. These excitatory postsynaptic potentials are likely to be the link between the patterns of action potentials arriving at nerve cells and the biomolecular activity in the cell. This response also needs to be replicated with improved speech processing strategies.
  • Item
    Thumbnail Image
    Growth factors, auditory neurones and cochlear implants: a review
    Marzella, Phillip L. ; Clark, Graeme M. ( 1999)
    The total number and the integrity of the auditory neurones available for stimulation govern the benefits that patients can derive from cochlear implants. Although electrical stimulation of the cochlea has been reported to promote auditory neuronal survival, this trophic effect is insufficient to regenerate de novo fibres. Hence, any agent that can maximize the number of, or regenerate functional auditory neurones would be of great benefit. Several studies have identified various growth factors crucial to the normal development of auditory neurones. In addition, in vitro studies have demonstrated that several growth factors are important for the maintenance, rescue and repair of adult auditory neurones. In vivo studies confirm the in vitro findings, reporting that specific growth factors are able to support auditory neuronal survival following injury or trauma, and in lower species growth factors have been associated with regenerating auditory neurones. In addition to their trophic actions, several growth factors have also been reported to affect ion channels thus the electrical response of neuronal fibres. Indeed, growth factors have been reported to enhance neuronal excitation and to improve the efficacy of synaptic transmission. Taken in concert, these effects suggest that exogenous growth factors delivered to the cochlea may improve the transmission of the electrical stimuli from the implanted electrode to the auditory pathway. Further studies are warranted to investigate how the adjunct delivery of growth factors with the cochlear implant may constitute a better treatment for hearing-impaired individuals.
  • Item
    Thumbnail Image
    Chronic electrical stimulation of the auditory nerve using non-charge-balanced stimuli
    Shepherd, Robert K. ; Linahan, N. ; Xu, J. ; Clark, Graeme M. ; Araki, S. ( 1999)
    This study was designed to evaluate the pathophysiological response of the cochlea following long-term intracochlear electrical stimulation using a poorly charge-balanced stimulus regime, leading to direct current (DC) levels >0.1 µA. Four normal-hearing adult cats were bilaterally implanted with scala tympani electrode arrays and unilaterally stimulated for periods up to 2200 h. Stimuli consisted of 50 µs monophasic current pulses presented at 2000 pulses per second (pps) per channel, and resulted in DC levels of 0.4-2.8 µA. Both acoustic and electrical (EABR) evoked potentials were periodically recorded during the stimulation program. Frequency-specific stimuli indicated that an extensive and widespread hearing loss occurred over the 4-24 KHz region in all stimulated cochleae, although the 2 KHz region exhibited thresholds close to normal in some animals, despite long-term implantation and chronic stimulation. Longitudinal EABRs showed a statistically significant increase in threshold for three of the four animals. Histopathological evaluation of the cochleae revealed a highly significant reduction in ganglion cell density in stimulated cochleae compared with their controls. Spiral ganglion cell loss was significantly correlated with the degree of inflammation, duration of electrical stimulation, and the level of DC. In conclusion, the present study highlights the potential for neural damage following stimulation using poorly charge-balanced stimuli.