Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Cognitive processing in children using cochlear implants: the relationship between visual memory, attention, and executive functions and developing language skills
    Surowiecki, Vanessa N. ; SARANT, JULIA ; MARUFF, PAUL ; Blamey, Peter J. ; Busby, Peter A. ; Clark, Graeme M. ( 2002)
    We performed this study to determine whether children using a cochlear implant performed differently from age- and gender-matched hearing aid users on 8 neuropsychological measures of visual memory, attention, and executive functioning. The study also examined whether differences in cognitive skills could account for some of the observed variance in speech perception, vocabulary, and language abilities of hearing-impaired children. In contrast to previous studies, our results revealed no significant cognitive differences between children who use a cochlear implant and children who use hearing aids. Partial correlation analysis indicated that the children’s visual memory skills, i.e., their recognition memory, delayed recall, and paired associative learning memory skills, correlated significantly with their language skills. When examined at a significance level of .01, attention and executive functioning skills did not relate to the children’s developing speech perception, vocabulary, or language skills. The results suggested that differences in visual memory skills may account for some of the variance seen in the language abilities of children using implants and children using hearing aids.
  • Item
    Thumbnail Image
    Summation of spatiotemporal input patterns in leaky integrate-and-fire neurons: Application to neurons in the cochlear nucleus receiving converging auditory nerve fiber input
    Kuhlmann, L ; Burkitt, AN ; Paolini, A ; Clark, GM (SPRINGER, 2002)
    The response of leaky integrate-and-fire neurons is analyzed for periodic inputs whose phases vary with their spatial location. The model gives the relationship between the spatial summation distance and the degree of phase locking of the output spikes (i.e., locking to the periodic stochastic inputs, measured by the synchronization index). The synaptic inputs are modeled as an inhomogeneous Poisson process, and the analysis is carried out in the Gaussian approximation. The model has been applied to globular bushy cells of the cochlear nucleus, which receive converging inputs from auditory nerve fibers that originate at neighboring sites in the cochlea. The model elucidates the roles played by spatial summation and coincidence detection, showing how synchronization decreases with an increase in both frequency and spatial spread of inputs. It also shows under what conditions an enhancement of synchronization of the output relative to the input takes place.
  • Item
    Thumbnail Image
    Speech perception outcomes in older children who use multichannel cochlear implants: Older is not always poorer
    Dowell, RC ; Dettman, SJ ; Hill, K ; Winton, E ; Barker, EJ ; Clark, GM (ANNALS PUBL CO, 2002-05)
    Speech perception outcomes for early-deafened children who undergo implantation as teenagers or young adults are generally reported to be poorer than results for young children. It is important to provide appropriate expectations when counseling adolescents and their families to help them make an informed choice regarding cochlear implant surgery. The considerable variation of results in this group makes this process more difficult. This study considered a number of factors in a group of 25 children who underwent implantation in Melbourne between the ages of 8 and 18 years. Each subject completed open-set speech perception testing with Bamford-Kowal-Bench sentences before and after implantation and preoperative language testing with the Peabody Picture Vocabulary Test. Data were collected regarding the type of hearing loss, age at implantation, age at hearing aid fitting, audiometric details, and preoperative and postoperative communication mode. Results were submitted to a stepwise multiple linear regression analysis with postoperative open-set sentence scores as the dependent variables. The analysis suggested that 3 factors have a significant predictive value for speech perception after implantation: preoperative open-set sentence score, duration of profound hearing loss, and equivalent language age. These 3 factors accounted for 66% of the variance in this group. The results of this study suggest that children who have useful speech perception before implantation, and higher age-equivalent scores on language measures, would be expected to do well with a cochlear implant. Consistent with other studies, a shorter duration of profound hearing loss is also advantageous. The mean sentence score for this group, 47%, was not significantly different from the mean result across all children in the Melbourne program.
  • Item
    Thumbnail Image
    Speech perception in children using cochlear implants: prediction of long-term outcomes.
    Dowell, RC ; Dettman, SJ ; Blamey, PJ ; Barker, EJ ; Clark, GM (Informa UK Limited, 2002-03)
    A group of 102 children using the Nucleus multichannel cochlear implant were assessed for open-set speech perception abilities at six-monthly intervals following implant surgery. The group included a wide range of ages, types of hearing loss, ages at onset of hearing loss, experience with implant use and communication modes. Multivariate analysis indicated that a shorter duration of profound hearing loss, later onset of profound hearing loss, exclusively oral/aural communication and greater experience with the implant were associated with better open-set speech perception. Developmental delay was associated with poorer speech perception and the SPEAK signal coding scheme was shown to provide better speech perception performance than previous signal processors. Results indicated that postoperative speech perception outcomes could be predicted with an accuracy that is clinically useful.
  • Item
    Thumbnail Image
    Short-term auditory memory in children using cochlear implants and its relevance to receptive language
    Dawson, P. W. ; Busby, P. A. ; McKay, C. M. ; Clark, Graeme M. ( 2002)
    The aim of this study was to assess auditory sequential, short-term memory (SSTM) performance in young children using cochlear implants (CI group) and to examine the relationship of this performance to receptive language performance. Twenty-four children, 5 to 11 years old, using the Nucleus 22-electrode cochlear implant, were tested on a number of auditory and visual tasks of SSTM. The auditory memory tasks were designed to minimize the effect of auditory discrimination ability. Stimuli were chosen that children with cochlear implants could accurately identify with a reaction time similar to that of a control group of children with normal hearing (NH group). All children were also assessed on a receptive language test and on a nonverbal intelligence scale. As expected, children using cochlear implants demonstrated poorer auditory and visual SSTM skills than their hearing peers when the stimuli were verbal or were pictures that could be readily labelled. They did not differ from their peers with normal hearing on tasks where the stimuli were less likely to be verbally encoded. An important finding was that the CI group did not appear to have a sequential memory deficit specific to the auditory modality. The difference scores (auditory minus visual memory performance) for the CI group were not significantly different from those for the NH group. SSTM performance accounted for significant variance in the receptive language performance of the CI group. However, a forward stepwise regression analysis revealed that visual spatial memory (one of the subtests of the nonverbal IQ test) was the main predictor of variance in the language scores of the children using cochlear implants.