Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Inhibition of smooth muscle cell adhesion and proliferation on heparin-doped polypyrrole
    Stewart, EM ; Liu, X ; Clark, GM ; Kapsa, RMI ; Wallace, GG (ELSEVIER SCI LTD, 2012-01)
    We have investigated the application of polypyrrole (pPy) as a material to influence neointimal cell behaviour. The physico-chemical properties of pPy doped with heparin (Hep), para-toluene sulfonate, poly(2-methoxyaniline-5-sulfonic acid) (pMAS) and nitrate ions were studied in addition to cell adhesion and proliferation studies of neointimal relevant cell lines cultured on the pPy substrates. Both smooth muscle (hSMC) and endothelial (hEC) cell types adhered and proliferated best on the smooth, hydrophilic pPy/pMAS material. Moreover, pPy/Hep is able to support the proliferation of hECs on the surface but inhibits hSMC proliferation after 4 days of culture. The inhibitory effect on hSMCs is most likely due to the well-known antiproliferative effect of heparin on hSMC growth. The results presented indicate that surface exposed heparin binds to the putative heparin receptor of hSMCs and is sufficient to inhibit proliferation. The application of galvanostatically synthesized pPy/Hep to stent surfaces presents a novel bioactive control mechanism to control neointimal cell growth.
  • Item
    Thumbnail Image
    Conducting polymers, dual neurotrophins and pulsed electrical stimulation - Dramatic effects on neurite outgrowth
    Thompson, BC ; Richardson, RT ; Moulton, SE ; Evans, AJ ; O'Leary, S ; Clark, GM ; Wallace, GG (ELSEVIER SCIENCE BV, 2010-01-25)
    In this study the synergistic effect of delivering two neurotrophins simultaneously to encourage neuron survival and neurite elongation was explored. Neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) were incorporated into polypyrrole (PPy) during electrosynthesis and the amounts incorporated and released were determined using iodine-125 ((125)I) radio-labelled neurotrophins. Neurite outgrowth from cochlear neural explants grown on the conducting polymer was equivalent to that on tissue culture plastic but significantly improved with the incorporation of NT-3 and BDNF. Neurite outgrowth from explants grown on polymers containing both NT-3 and BDNF showed significant improvement over PPy doped only with NT-3, due to the synergistic effect of both neurotrophins. Neurite outgrowth was significantly improved when the polymer containing both neurotrophins was electrically stimulated. It is envisaged that when applied to the cochlear implant, these conducting and novel polymer films will provide a biocompatible substrate for storage and release of neurotrophins to help protect auditory neurons from degradation after sensorineural hearing loss and encourage neurite outgrowth towards the electrodes.