Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    A speech processing strategy for multiple-electrode cochlear implant prostheses
    Tong, Y. C. ; Clark, Graeme M. (Monash University Press, 1983)
    Speech studies in a number of research centres have shown that useful speech information could be presented to deaf patients using single or multiple electrode cochlear implant prostheses (Parking & Anderson, 1983). In our laboratory, speech processing strategies were formulated on the basis of psychophysical results. This paper examines the psychophysical characteristics of the hearing sensations produced by electrical stimulation using scala tympani electrodes in postlingually deaf patients; a speech processing strategy is then discussed on the basis of these characteristics.
  • Item
    Thumbnail Image
    Selection of speech processing for cochlear implant prostheses
    Millar, J. B. ; Tong, Y. C. ; Clark, Graeme M. (Monash University Press, 1983)
    In this paper we consider a framework against which to discuss strategies for the design of speech processors for cochlear implant prostheses. We hope to encourage discussion of the bases for such a framework even though it may seem a distant objective owing to the large gaps in our understanding of several component parts of cochlear implant systems. The existence of such a framework would provide a background against which to view the current diverse cochlear implant systems and to evaluate their performance.
  • Item
    Thumbnail Image
    Advances in cochlear implant speech processing
    Clark, Graeme M. (Monduzzi Editore, 1997)
    A cochlear implant is a device which restores some hearing in severely-to-profoundly deaf people when the organ of Corti has not developed or is destroyed by disease or injury to such an extent no comparable hearing can be obtained with a hearing aid. When the organ of Corti is severely malfunctioning or absent, sound vibrations cannot be transduced into temporo-spatial patterns of action potentials along the auditory nerve for the coding of frequency and intensity. As a result, a hearing aid which amplifies sound is of little or no use. Our early research (Clark, 1969) emphasized that with electrical stimulation there was an electro-neural "bottle-neck" restricting the amount of speech and other acoustic information that could be presented to the nervous system. It also showed the need to use multiple-channel stimulation presented non-simultaneously, to minimize channel interaction (Clark, 1987).