Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Growth factors, auditory neurones and cochlear implants: a review
    Marzella, Phillip L. ; Clark, Graeme M. ( 1999)
    The total number and the integrity of the auditory neurones available for stimulation govern the benefits that patients can derive from cochlear implants. Although electrical stimulation of the cochlea has been reported to promote auditory neuronal survival, this trophic effect is insufficient to regenerate de novo fibres. Hence, any agent that can maximize the number of, or regenerate functional auditory neurones would be of great benefit. Several studies have identified various growth factors crucial to the normal development of auditory neurones. In addition, in vitro studies have demonstrated that several growth factors are important for the maintenance, rescue and repair of adult auditory neurones. In vivo studies confirm the in vitro findings, reporting that specific growth factors are able to support auditory neuronal survival following injury or trauma, and in lower species growth factors have been associated with regenerating auditory neurones. In addition to their trophic actions, several growth factors have also been reported to affect ion channels thus the electrical response of neuronal fibres. Indeed, growth factors have been reported to enhance neuronal excitation and to improve the efficacy of synaptic transmission. Taken in concert, these effects suggest that exogenous growth factors delivered to the cochlea may improve the transmission of the electrical stimuli from the implanted electrode to the auditory pathway. Further studies are warranted to investigate how the adjunct delivery of growth factors with the cochlear implant may constitute a better treatment for hearing-impaired individuals.
  • Item
    Thumbnail Image
    Assessment of intracochlear ossification by three-dimensional reconstruction of computerised scans
    Pyman, B. C. ; Seldon, H. L. ; O'Sullivan, R. ; Tillner, W. D. ; Donnelly, M. ; Scott, M. ; Mack, K. F. ; Clark, Graeme M. ( 1995)
    The aim of the study was to investigate whether the three-dimensional (3-D) images from computed tomography (CT) scans of the ears could adequately define the site and extent of new bone in the cochlea, and how these images compared with those created by magnetic resonance imaging (MRI). The patients whose investigations were used in the study were being assessed for a cochlear implant and were selected on the basis of their history and the appearance of their two-dimensional (2-D) CT scans. Four patients had progressive mixed deafness, a family history of deafness, and stapedectomies. They were considered to be deaf from otosclerosis and needed further assessment because their scans showed either obstructed cochleas from new bone, or demineralized otic capsules to the point that we could not determine whether new bone was present or not. The fifth patient was being assessed within 3 months of suffering deafness from meningitis. In one ear he had extensive ossification, and in the other the degree of opacification shown in axial and coronal cuts of the basal turn was inconsistent. Essentially the problem is that at the magnification used in examination of the inner ear, the resolution of 2-D CT scans gives indistinct borders between bone and water. Magnetic resonance imaging has commonly been used in these cases. The study showed that it is now possible to confirm whether or not there is new bone and to demonstrate the site and extent of new bone with both 3-D and MRI images. It is not possible to give a degree of sensitivity and specificity for this observation because of the small group of subjects in the study. It should be worth applying the reconstruction software to scans from helical scanners with a view to assessing whether the resolution of the 3-D images can be improved further.