Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Multichannel auditory brainstem implantation: the Australian experience
    Briggs, R. J. S. ; Fagan, P. ; Atlas, M. ; Kaye, A. H. ; Sheehy, J. ; Hollow, R. ; Shaw. S. ; Clark, Graeme M. (Cambridge University Press, 2000)
    The multichannel auditory brainstem implant (ABI) provides the potential for hearing restoration in patients with neuro bromatosis type 2 (NF2). Programmes for auditory brainstem implantation have been established in two Australian centres. Eight patients have been implanted under the protocol of an international multi-centre clinical trial. Three patients had ABI insertion at the time of first side tumour removal, four at second side tumour removal and one after previous bilateral surgery where there was some residual tumour. The translabyrinthine approach was used in all cases. Successful positioning of the electrode array was achieved in seven of eight patients, all of whom achieved auditory perception with electrical stimulation. Intra-operative electrically evoked auditory brainstem response testing was successful in four patients and was useful in confirming correct electrode position. In six cases postoperative psychophysical and auditory perception testing demonstrated that useful auditory sensations were achieved. Five of these patients regularly used the implant. In one patient electrode placement was unsuccessful and only non-auditory sensations occurred on stimulation. In the remaining patients nonauditory sensations were minimal and avoidable by selective electrode programming. Auditory brainstem implantation should be considered in patients with NF2. The greatest benefit is seen in patients without debilitating disease who have non-aidable hearing in the contralateral ear.
  • Item
    Thumbnail Image
    Potential and limitations of cochlear implants in children
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    Multiple-channel cochlear implants have been in use with children and adolescents for 8 years. The speech perception, speech production, and language of many of these children has been investigated in some detail.l-4 There have been many predictions about factors that may affect the performance of children with implants. For instance, it has been suggested that children with a congenital loss of hearing would not have the same potential to benefit from a cochlear implant as those with an acquired loss. Similarly, it has been suggested that younger children are likely to gain more benefit from a cochlear implant because of the effect of various critical ages for language learning.5 As more results have become available, it has been our observation that the performance of any particular child with a cochlear implant does not appear to follow well-defined rules, and that generalizations about the potential of certain groups of children are likely to encounter many exceptions. We now have a large quantity of results for children using cochlear implants, and it may be possible to determine some of the factors that have a significant effect on performance. This paper will attempt to identify some of these factors by reviewing speech perception results for 100 children implanted with the Nucleus 22-channel cochlear prosthesis in Australia and speech perception results for adult patients. This analysis will use an "information processing" model of a child using a cochlear implant. That is, we will assume that a child will benefit from a cochlear implant in terms of speech perception, production, and language development, if he or she receives a maximal amount of auditory information from the environment, and is able to process this information successfully. This model divides potential limiting or predictive factors into those that affect the information presented to the auditory system (eg, implant technology, surviving auditory neurons) and those that affect the processing of this information (eg, development of central auditory pathways, amount and consistency of auditory input).
  • Item
    Thumbnail Image
    Vowel imitation task: results over time for 28 cochlear implant children under the age of eight years
    Dettman, S. J. ; Barker, E. J. ; Dowell, R. C. ; Dawson, P. W. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    With increasing numbers of implanted children under the age of 4 years, numerous researchers have reminded us of the need for valid, sensitive, and reliable tests of developing speech perception.1,2 In addition to studies of the efficacy of implanted prostheses, there is a need to investigate the many variables that influence children's communicative performance, such as changes in speech-coding strategy, updated speech-processing systems, the effects of various training regimens, and the selection of educational and communication modes.