Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Design fundamentals for electrotactile devices: the Tickle Talker case study
    Cowan, Robert S. C. ; Galvin, Karyn L. ; Blamey, Peter J. ; Sarant, Julia Z. (Whurr, 1995)
    Since the work of Gault in the 1920s, the literature has chronicled the development of numerous tactile devices for use by the hearing impaired in improving communication. Devices have been developed to target improvements in both speech perception and speech production. In each development, the inventors have attempted to encode speech information through stimulation of the intact kinaesthetic system of the individual, as a supplement or replacement for speech input available from the damaged auditory pathway.
  • Item
    Thumbnail Image
    Habilitation issues in the management of children using the cochlear multiple-channel cochlear prosthesis
    Cowan, Robert S. C. ; Barker, Elizabeth J. ; Dettman, Shani J. ; Blamey, Peter J. ; RANCE, GARY ; Sarant, Julia Z. ; Galvin, Karyn L. ; Dawson, Pam W. ; Hollow, Rod ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. (Wien, 1994)
    Since 1985, a significant proportion of patients seen in the Melbourne cochlear implant clinic have been children. The children represent a diverse population, with both congenital and acquired hearing-impairments, a wide-range of hearing levels pre-implant, and an age range from 2 years to 18 years. The habilitation programme developed for the overall group must be flexible enough to be tailored to the individual needs of each child, and to adapt to the changing needs of children as they progress. Long-term data shows that children are continuing to show improvements after 5-7 years of device use, particularly in their perception of open-set words and sentences. Habilitation programs must therefore be geared to the long-term needs of children and their families. Both speech perception and speech production need to be addressed in the specific content of the habilitation program for any individual child. In addition, for young children, the benefits of improved speech perception should have an impact on development of speech and language, and the focus of the programme for this age child will reflect this difference in emphasis. Specific materials and approaches will vary for very young children, school-age and teenage children. In addition, educational setting will have a bearing on the integration of listening and device use into the classroom environment.
  • Item
    Thumbnail Image
    Preliminary speech perception results for children with the 22-electrode Melbourne/ cochlear hearing prosthesis
    Cowan, R. S. C. ; Dowell, R. C. ; Pyman, B. C. ; Dettman, S. J. ; Dawson, P. W. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Clark, Graeme M. ( 1993)
    The 22-electroce cochlear prosthesis developed by the University of Melbourne and Cochlear Pty. Ltd. has been shown to provide significant speech perception benefits to profoundly deafened adults. More recently, use of an improved Multipeak encoding strategy has significantly improved speech perception performance both in quiet and in noise. Benefits to speech perception in children have not as yet been fully documented, in part due to the shorter history of implant use in children and the smaller overall number of children implanted as compared with adults. The first implantation of the 22-electrode cochlear prosthesis in a child was carried out in Melbourne in January of 1985. In Melbourne, a 5-year-old child was operated on in April 1986, and a first congenitally deaf child in April 1987. The age of implantation has been progressively reduced, with the first 2-year-old child implanted in Melbourne in 1990. As at January 1992, approximately 1,200 children (under 18 years of age inclusive) have been implanted worldwide with the 22-electrode cochlear prosthesis. Of this number, approximately 50% are under the age of 6 years. The age of the child, aetiology of the hearing loss, age at onset and duration of the hearing loss, education program attended both prior to and subsequent to implantation, and parental motivation to assist in habilitation are all factors which may affect an individual child's development and progress with the device. Evaluation of performance in children is complicated by a number of issues, including the effects of delayed speech and language development, and the ability of individual children to perform auditory tests. The measure of performance chosen for any evaluation will also reflect the interests of the particular clinician. For example, effects of device use on speech production may be of interest to the speech therapist, whereas educational progress will be of primary importance to the teacher of an implanted child. However, in choosing an appropriate evaluation test to measure progress woth the cochlear prosthesis, it is vital to realize that all measures such as effects of device use on speech production, educational progress, development of language, and effects on social and communication skills depend on the child being able to accurately perceive speech information through her/his device.
  • Item
    Thumbnail Image
    The potential benefit and cost-effectiveness of tactile devices in comparison with cochlear implants
    Blamey, Peter J. ; Cowan, Robert S.C. (Whurr, 1993)
    The use of the word 'potential' in the title of this chapter implies that the discussion must be somewhat speculative in attempting to foresee the benefits and costs of cochlear implants in the future. It is now much easier to do this than it would have been five or ten years ago, although there still remain many unanswered questions about their use, especially for hearing-impaired children. As far as possible, the assumptions and opinions expressed in this chapter are based on fact but in some cases reflect the subjective bias of the authors. (These opinions are not necessarily shared by other contributors to this book.) In particular, one author (PJB) has been involved in cochlear implant research for over ten years and began developing a tactile device in 1984 as a control device in studies of cochlear implants in children. Children and adults using this device have produced results comparable to those for some groups of cochlear implant patients. Despite these results, which exceeded initial expectations, there is still some bias in favour of the cochlear implant.