Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Results for children and adolescents using the multichannel cochlear prosthesis [Abstract]
    Dowell, Richard C. ; Clark, Graeme M. ; Dettman, Shani J. ; Dawson, Pamela W. ( 1992)
    The first adolescent to use the 22-electrode cochlear prosthesis was Implanted In Melbourne in 1985 and the first child (less than 10 years), the following year. Since then, over 100 children have received the cochlear prosthesis in Australia and over 1200 worldwide. Detailed assessment of 200 children in the U.S.A., Australia and Germany lead to the market approval of the prosthesis by the U.S. Food and Drug Administration in July 1990. The analysis of results for these children has proven to be difficult due to the use of different tests in different places, the lack of appropriate assessment tools for young children, the wide range of performance, and the problems of cooperation for young children. Despite these problems, some trends are beginning to emerge in the speech perception results for implanted children. Children with a greater amount of auditory experience before becoming profoundly deaf tend to perform better, as do children with more experience with the cochlear prosthesis. Those with a greater number of electrodes in use also perform better, a result supported by adult studies. Although older prelinguistically deafened children do not perform as well as postlinguistically deafened adults, there appears to be little difference between results for pre-and post-linguistically deafened young children. These trends In speech perception results will be discussed in more detail.
  • Item
    Thumbnail Image
    Post-implant habilitation for children using cochlear implants: effects on long-term outcome
    Dowell, Richard C. ; Dettman, Shani J. ; WILLIAMS, SARAH ; TOMOV, ALEXANDRA ; Hollow, Rod ; Clark, Graeme M. ( 2002)
    Most clinicians working in the cochlear implant field advocate a regular habilitation program for young children receiving implants. The development of auditory skills and the incorporation of these skills into language development are thought to be key areas for such programs. Studies of speech perception and language outcomes demonstrate that an educational approach that emphasises spoken language development appears to enhance the results for implanted children. It remains difficult, however, to demonstrate clearly the effect of habilitation objectively and to determine how much individual attention is desirable for each child. This pilot study considered the long term speech perception and language outcomes for two groups of children who received Nucleus cochlear implants in Melbourne. One group (n=17) was identified as receiving regular habilitation from the Melbourne Cochlear Implant Clinic over a four year post-operative period. Another group (n=l1) was identified as receiving very little regular habilitation over the post-operative period. The language and speech perception results for these two groups showed a significant difference in performance on a wide range of measures with the group receiving regular formal habilitation demonstrating better performance on all measures. These groups included only congenitally, profoundly hearing-impaired children and did not differ significantly on mean age at implant or experience at the time of assessment. Further studies are needed to clarify these results on a larger group of children, and to control for additional confounding variables. Nonetheless, these preliminary results provide support for the incorporation of regular long-term habilitation into cochlear implant programs for children.
  • Item
    Thumbnail Image
    Predicting speech perception outcomes for children using multichannel cochlear implants [Abstract]
    Dowell, Richard C. ; Dettman, Shani J. ; WILLIAMS, SARAH ; Hill, Katie ; TOMOV, ALEXANDRA ; Clark, Graeme M. ( 2002)
    The ability to predict outcomes for children who are cochlear implant candidates is most helpful in counselling families and making clinical recommendations. Open-set speech perception results have been collected for all children implanted with the Nucleus device in Melbourne. Speech perception as assessed at six month intervals following implantation. Information wascollected for each child regarding type of hearing loss, duration and age at onset of profound hearing loss, age at implantation, pre and post-implant communication mode, developmental delay, speech coding scheme and implant experience.
  • Item
    Thumbnail Image
    Speech perception in implanted children: effects of speech processing strategy and residual hearing
    Meskin, T. ; Rance, G. ; Cody, K. ; Sarant, J. ; Larratt, M. ; Latus, K. ; Hollow, R. ; Rehn, C. ; Dowell, R.C. ; Pyman, B. ; Gibson, W.P.R. ; Clark, Graeme M. ; Cowan, Robert S. C. ; Barker, E. J. ; Pegg, P. ; Dettman, S. ; Rennie, M. ; Galvin, K. (Mendoza Editor, 1997)
    The ability of implanted children to adapt to different speech processing strategies has been demonstrated for the Nucleus implant system. Children previously experienced with the Multipeak speech processing strategy. were able to gain significant improvements in consonant, word and sentence perception using the Speak speech processing strategy. suggesting some degree of neural plasticity in neural-auditory coding. Of 192 implanted children with different degrees of preoperative residual hearing, 65% were found to obtain significant scores on open-set speech materials using electrical stimulation alone. Those children with more residual hearing had a greater probability of achieving open-set understanding and at a minimum level, perceived high frequency consonant information which would not have been available through conventional hearing aids.
  • Item
    Thumbnail Image
    Speech perception benefits for children using the 22-channel Melbourne/cochlear hearing prosthesis [Abstract]
    Sarant, J.Z. ; Hollow, P.W. ; Clark, Graeme M. ; Dowell, Richard C. ; Cowan, Robert S.C. ; Pyman, B. C. ; Dettman, S. J. ; RANCE, GARY ; Barker, Elizabeth J. ( 1993)
    In 1985; the first child was implanted with the Cochlear 22-channel cochlear prosthesis at the University of Melbourne Royal Victorian Eye & Ear Hospital Cochlear Implant Clinic. There are now 42 children who have received the device in Melbourne. Analysis of patient details for these children show a very heterogeneous group, with a wide range in age, hearing thresholds, duration of deafness and aetiology. The major aetiologies found were either a congenital profound deafness.; or a hearing loss due to meningitis. In all but 3 cases, the children are using 15 or more electrodes in the array. Speech perception benefits have been analyzed according to a six-level hierarchical classification scheme. All of-the children achieved a minimum benefit of discrimination of suprasegmental information (Category 2), and 59% of the children achieved open-set understanding of unfamiliar speech material without the aid of lip-reading (Categories 5 & 6). Detailed analysis suggests that the majority of children achieving open-set speech perception benefits had more than one year of experience with their implant. and less than seven years of profound deafness prior to implantation.
  • Item
    Thumbnail Image
    Factors associated with open-set speech perception in children using the Cochlear multiple-channel prosthesis [Abstract]
    Yaremko, R. ; Rance, G. ; Sarant, Julia Z. ; Dawson, Pam W. ; Gibson, William P.R. ; Clark, Graeme M. ; Dowell, Richard C. ; Cowan, Robert S.C. ; Brown, Catherine D. ; Dettman, Shani J. ; Barker, Jane ; Barker, Elizabeth J. ( 1993)
    Since 1985, nearly 100 children have received the 22-channel cochlear prosthesis from the Melbourne and Sydney cochlear implant clinics. These two clinics account for the bulk of casesin Australia, and have similar management philosophies and selection criteria. The patient population represents a variety of etiologies, and ranges in age from 2 - 18 years of age. Bothcongenital and postlinguistic hearing losses are included. In order to assess benefit to speech perception in such a diverse group, the children's results have been tabulated according to a six level hierarchical scale of speech perception achievement. The scale ranges from category I,detection of sound only, to category 6, which includes significant perception scores for open-setwords and sentences. Analysis of the results shows that the majority of the children are achieving open-set speech perception benefits, and that results continue to improve with additional experience with their devices. There are a number of contributing factors to these open-set speech� perception results which have impact both on selection issues and on habilitation with different age ranges �of patients.