Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    The histopathology of the human temporal bone and auditory central nervous system following cochlear implantation in a patient: correlation with psychophysics and speech perception results
    Clark, Graeme M. ; Shepherd, Robert K. ; Franz, Burkhard K.-H. ; Dowell, Richard C. ; Tong, Yit C. ; Blamey, Peter J. ; Webb, Robert L. ; Pyman, Brian C. ; McNaughton, Judy ; Bloom, David M. ; Kakulas, Byron A. ; Siejka, Stan ( 1988)
    Cochlear implantation has become a recognised surgical procedure for the management of a profound-total hearing loss, especially in patients who have previously had hearing before going deaf (postlingual deafness). Nevertheless, it is important for progress in the field that patients who have had a cochlear implant, bequeath their temporal bones for research. This will then make it possible to further assess the safety of the procedure, and the factors that are important for its effectiveness. Biological safety has been assessed in a number of studies on animals, in particular, the biocompatibility of the materials used (1,2), the histopathological effects of long-term implantation on the cochlea (3, 4, 5, 6, 7, 8), and the effects of chronic electrical stimulation on the viability of spiral ganglion cells (9, 10, 11, 12). In studying the temporal bones of deceased cochlear implant patients it is possible to help establish that the animal experimental results are applicable to Man. Surgical trauma has been most frequently evaluated by inserting electrodes into cadaver temporal bones. It is important, however, to examine bones that have been previously implanted surgically to ensure that the cadaver findings are applicable to operations on patients. The effectiveness of cochlear implantation can be studied by correlating the histopathological findings, the dendrite and spiral ganglion cell densities, in particular, with the psychophysical and speech perception results. Other benefits also accrue, for example, establishing the accuracy of preoperative X-rays and electrical stimulation of the promontory in predicting cochlear pathology and spiral ganglion cell numbers. For the above reasons it has been especially interesting to examine both the temporal bones and central nervous system from one of our patients (patient 13) who participated in the initial clinical trial of the Cochlear Proprietary Limited (a member of the Nucleus group) multiple-electrode cochlear prosthesis, and who died due to a myocardial infarction following coronary bypass surgery.
  • Item
    Thumbnail Image
    The University of Melbourne/Nucleus cochlear prosthesis
    Clark, Graeme M. ; Blamey, P. J. ; Brown, A. M. ; Busby, P. A. ; Dowell, R. C. ; Franz, B. K-H. ; Millar, J. B. ; Pyman, B. C. ; Shepherd, R. K. ; Tong, Y. C. ; Webb, R. L. ; Brimacombe, J. A. ; Hirshorn, M. S. ; Kuzma, J. ; Mecklenburg, D. J. ; Money, D. K. ; Patrick, J. F. ; Seligman, P. M. ( 1988)
    This is a review of research to develop the University of Melbourne/Nucleus cochlear prosthesis for patients with a profound-total hearing loss. A more complete review can be obtained in Clark et al. A prototype receiver-stimulator and multiple-electrode array developed at the University of Melbourne was first implanted in a postlingually deaf adult patient with a profound-total hearing loss on 1 August 1978. A speech processing strategy which could help this patient understand running speech, especially when combined with lipreading was developed in 1978 following initial psychophysical studies. A prototype wearable speech processor was fabricated in 1979, that could provide significant help for the first two patients in understanding running speech when used in combination with lipreading compared with lipreading alone, and it also enabled them to understand some running speech when using electrical stimulation alone. An implantable receiver-stimulator and wearable speech processor embodying the principles of the prototype devices were then produced for clinical trial by the Australian biomedical firm, Nucleus Ltd, and its subsidiaries, Cochlear Pty Ltd and Cochlear Corporation. This cochlear implant was initially clinically trialled on six patients at The Royal Victorian Eye & Ear Hospital in 1982, and shown to give similar results to those obtained with the prototype device. In view of these findings a clinical trial was carried out for a Premarket Approval Application to the US Food and Drug Administration (FDA), and extended to a number of centres in the US, Canada, and West Germany. This clinical trial confirmed that patients could understand running speech when electrical stimulation was combined with lipreading, and that some patients could also understand running speech when using electrical stimulation alone. Today, more than 600 patients world-wide are using cochlear implants developed from the research described in this paper.
  • Item
    Thumbnail Image
    Recent developments with the Nucleus 22-electrode cochlear implant: a new two formant speech coding strategy and its performance in background noise
    Franz, Burkhard K-H. G. ; Dowell, Richard C. ; Clark, Graeme M. ; Seligman, Peter M. ; Patrick, James F. ( 1987)
    A clinical evaluation of speech processing strategies for the Nucleus 22-electrode cochlear implant showed improvements in understanding speech using the new F0F1F2 speech coding strategy instead of the F0F2 strategy. Significant improvement in closed-set speech recognition in the presence of background noise was an additional advantage of the new speech processing strategy.
  • Item
    Thumbnail Image
    Preliminary results for the Cochlear Corporation multielectrode intracochlear implant in six prelingually deaf patients
    Clark, Graeme M. ; Busby, Peter A. ; Roberts, Susan A. ; Dowell, Richard C. ; Blamey, Peter J. ; Mecklenburg, Dianne J. ; Webb, Robert L. ; Pyman, Brian C. ; Franz, Burkhard K. ( 1987)
    The preliminary results from this study indicate that some prelingually deaf patients may get worthwhile help from a multiple-electrode cochlear implant that uses a formant-based speech processing strategy. It is encouraging that these improvements can occur in young adults and teenagers. The results for two children are also encouraging. A 10-year-old child obtained significant improvement on some speech perception tests. It was easy to set thresholds and comfortable listening levels on a 5-year-old child, and he is now a regular user of the device. There are, however, considerable variations in performance among the prelingual patients, which may be related to the following factors: whether they have had some hearing after birth, the method of education used, the motivation of the patient, and age at implantation.
  • Item
    Thumbnail Image
    A multiple-electrode intracochlear implant for children
    Clark, Graeme M. ; Blamey, Peter J. ; Busby, Peter A. ; Dowell, Richard C. ; Franz, Burkhard K-H. ; Musgrave, Gaye Nicholls ; Nienhuys, Terry G. ; Pyman, Brian C. ; Roberts, Susan A. ; Tong, Yit C. ; Webb, Robert L. ; Kuzma, Januz A. ; Money, David K. ; Patrick, James F. ; Seligman, Peter M. ( 1987)
    A multiple-electrode intracochlear implant that provides 21 stimulus channels has been designed for use in young children. It is smaller than the adult version and has magnets to facilitate the attachment of the headset. It has been implanted in two children aged 5 and 10 years. The two children both lost hearing in their third year, when they were still learning language. Following implantation, it was possible to determine threshold and comfortable listening levels for each electrode pair. This was facilitated in the younger child by prior training in scaling visual and electrotactile stimuli. Both children are regular users of the implant, and a training and assessment program has been commenced.
  • Item
    Thumbnail Image
    Revised selection criteria for the multiple-channel cochlear implant
    Pyman, Brian C. ; Dowell, Richard C. ; Brown, A. M. ; Clark, Graeme M. ; Webb, Robert L. ; Franz, Burkhard K.-H. G. ; Dettman, Shani J. ; Rowland, L. C. ; Blamey, Peter J. ( 1991)
    The criteria of suitability for a cochlear implant have been extended from total deafness to include some individuals with residual hearing. The aim of the initial hearing evaluation is to define whether the speech discrimination is good enough to justify perseverance with a hearing aid. In adults, usually the pure tone audiogram and speech audiometry are accurate and consistent. In children, however, to achieve accuracy, free field testing must be complemented by repeated aided conditioned responses and objective evoked response audiometry. When a child has residual hearing it is more difficult to assess the potential for habilitation using an aid. For both adults and children, it is necessary to make a selection from a battery of tests on the basis of the subjects experience. This development highlights the need for otologists and audiologists to become familiar with the battery of tests used in evaluating severe deafness (Plant 1984) and to review decisions made about the management of people with severe to total deafness. In suitable people, the aim of treatment with the Cochlear multichannel implant and its multipeak speech processor is a significant score for open set speech discrimination tests using hearing alone. This cannot always be achieved but as long as the evaluation protocol has been used to warn patients before the operation, they will be satisfied with a result where the implant complements lip reading resulting in discrimination of running speech and detection of environmental sounds.
  • Item
    Thumbnail Image
    Preliminary results with a miniature speech processor for the 22-electrode Melbourne/Cochlear hearing prosthesis
    Dowell, Richard C. ; Whitford, Lesley A. ; Seligman, Peter M. ; Franz, Burkhard K.-H. G. ; Clark, Graeme M. (Kugler & Ghedini, 1990)
    The 22-electrode cochlear prosthesis developed by the University of Melbourne in conjunction with Cochlear Pty Ltd has been used successfully by profoundly deaf patients since 1982 and is now a part of everyday life for some 2000 people in many countries around the world. The implanted part of the prosthesis has remained relatively unchanged in this time except for the alteration of the design in 1986 to incorporate an implanted magnet and reduce the overall thickness of the device. The implanted magnet eliminated the need for wire headsets which were difficult to fit and in some cases did not maintain the position of the external transmitter coil adequately. This was felt to be essential before the prosthesis could be used in young children.