Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    Thumbnail Image
    Hearing restoration with the multichannel auditory brainstem implant
    Briggs, R. J. S. ; Kaye, A. H. ; Dowell, R. C. ; Hollow, R. D. ; Clark, Graeme M. ( 1997)
    Restoration of useful hearing is now possible in patients with bilateral acoustic neuromas by direct electrical stimulation of the cochlear nucleus. Our first experience with the Multichannel Auditory Brainstem Implant is reported. A forty four year old female with bilateral acoustic neuromas and a strong family history of Neurofibromatosis Type II presented with profound bilateral hearing impairment. Translabyrinthine removal of the right tumour was performed with placement of the Nucleus eight electrode Auditory Brainstem Implant. Intraoperative electrically evoked auditory brainstem response monitoring successfully confirmed placement over the cochlear nucleus. Postoperatively, auditory responses were obtained on stimulation of all electrodes with minimal non-auditory sensations. The patient now receives useful auditory sensations using the "SPEAK" speech processing strategy. Auditory brainstem Implantation should be considered for patients with Neurofibromatosis Type II in whom hearing preservation tumour removal is not possible.
  • Item
    Thumbnail Image
    Contributing factors to improved speech perception in children using the nucleus 22-channel cochlear prosthesis
    Cowan, Robert S. C. ; Galvin, Karyn L. ; KLIEVE, SHARON ; Barker, Elizabeth J. ; Sarant, Julia Z. ; DETTMAN, SHANI ; Hollow, Rod ; RANCE, GARY ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. ( 1997)
    It has been established that use of multiple-channel intracochlear implants can significantly improve speech perception for postlinguistically deafened adults. In the development of the Nucleus 22-channel cochlear implant, there have been significant developments in speech processing strategies, providing additional benefits to speech perception for users. This has recently culminated in the release of the Speak speech processing strategy, developed from research at the University of Melbourne. The Speak strategy employs 20 programmable bandpass filters which are scanned at an adaptive rate, with the largest outputs of these filters presented to up to ten stimulation channels along the electrode array. Comparative studies of the Speak processing strategy (in the Nucleus Spectra-22 speech processor), with the previously-used Multipeak (Multipeak) speech processing strategy (in the Minisystem-22 speech processor), with profoundly deaf adult cochlear implant users have shown that the Speak processing strategy provides a significant benefit to adult users both in quiet situations and particularly in the presence of background noise. Since the first implantation of the Nucleus device in a profoundly hearing-impaired child in Melbourne in 1985, there has been a rapid growth in the number of children using this device. Studies of cochlear implant benefits for children using the Nucleus 22-channel cochlear implant have also shown that children can obtain significant benefits to speech perception, speech production and language, including open-set understanding of words and sentences using the cochlear implant alone. In evaluating contributing factors to speech perception benefits available for children, four specific factors are important to investigate: (1) earlier implantation -resulting from earlier detection of deafness; (2) improved hardware and surgical techniques -allowing implantation in infants; (3) improved speech processing, and (4) improved habilitation techniques. Results reported previously have been recorded primarily for children using the Multipeak strategy implemented in the MSP speech processor. While it is important to evaluate the factors which might contribute to improvements in speech perception benefits, an important question is the effect of improved speech processing strategy, since this will determine what is perceived through the device. Given that adult patients changing to the Spectra speech processor had also shown improved perception in noisy situations, and the fact that children are in general in noisy environments in the classroom setting for a large proportion of their day, it was of obvious interest to evaluate the potential for benefit in poor signal-to-noise ratios from use of the Speak processing strategy and from specific training in the ability to perceive in background noise. The study was aimed at evaluating whether children who were experienced in use of the Multipeak speech processing strategy would be able to changeover to the new Speak processing strategy, which provides a subjectively different output. Secondly, the study aimed to evaluate the benefits which might accrue to children from use of controlled habilitation in background noise.
  • Item
    Thumbnail Image
    Speech perception results for children with implants with different levels of preoperative residual hearing
    Cowan, Robert S. C. ; DelDot, J. ; Barker, J. Z. ; Barker, Elizabeth J. ; Sarant, Julia Z. ; Pegg, P. ; Dettman, S. ; Galvin, K. L. ; Rance, G. ; Hollow, R. ; Dowell, R. C. ; Pyman, B. ; Gibson, W. P. R. ; Clark, Graeme, M. ( 1997)
    Objective: Many reports have established that hearing-impaired children using the Nucleus 22 channel cochlear implant may show both significant benefits to lipreading and significant scores on open-set words and sentences using electrical stimulation only. These findings have raised questions about whether severely or severely-to-profoundly deaf children should be candidates for cochlear implants. To study this question, postoperative results for implanted children with different levels of preoperative residual hearing were evaluated in terms of speech perception benefits. Study Design/Setting: A retrospective study of the first 117 children, sequentially, to undergo implantation in the Melbourne and Sydney Cochlear Implant Clinics was undertaken. All children had been assessed by and received their implants in a tertiary referral centre. Main Outcome Measures: To assess aided residual hearing, the children were grouped into four categories of hearing on the basis of their aided residual hearing thresholds measured preoperatively. To assess benefits, the scores of children on standard speech perception tests were reviewed. As different tests were used for children with different ages and language skills, children were grouped into categories according to the level of postoperative speech perception benefit. Results: The results showed that children in the higher categories of aided preoperative residual hearing showed significant scores on open-set word and sentence perception tests using the implant alone. For children in lower categories of aided residual hearing, results were variable within the groups. More than 90% of children with implants with aided residual hearing thresholds in the speech range above I kHz achieved open-set understanding of words and sentences. Conclusion: While the results of this preliminary study confirm previous findings of differential outcomes for children with different levels of preoperative residual hearing, they suggest that children with severe to profound hearing impairments should be considered for cochlear implantation.
  • Item
    Thumbnail Image
    Multichannel auditory brainstem implants: an Australian case study [Abstract]
    Hollow, Rod ; COWAN, ROBERT ; BRIGGS, ROBERT ; KAYE, ANDREW ; DOWELL, RICHARD ; Shaw, Stephanie ; Clarke, Graeme M. ( 1996)
    The multichannel Auditory Brainstem Implant (ABI) is an implantable device designed to restore a level of auditory perception in patients with bilateral acoustic neuromas, where the removal of the tumours is expected to result in a total loss of hearing. As with the cochlear implant, the ABI utilises an externally worn speech processor and headset, together with a surgically-placed receiver-stimulator and electrode array. The electrode array, developed through the collaboration of the House Ear Institute in the United States and Cochlear Corporation, consists of eight electrodes on a carrier, which is placed on the surface of the brainstem in the area of the cochlear nucleus.
  • Item
    Thumbnail Image
    Current trends in speech perception performance in adult cochlear implant patients [Abstract]
    Hollow, Rod ; Plant, Kerrie ; Whitford, Lesley ; Skok, Marisa ; DOWELL, RICHARD ; Clark, Graeme M. ( 1996)
    In 1994, Cochlear Pty. Ltd. (Now Cochlear Limited) released a new speech processor, the Spectra 22, for use with the Nucleus 22-channel cochlear implant. The Spectra 22 speech processor incorporates a new speech processing strategy called SPEAK, which is based upon research conducted by the University of Melbourne. This paper reports post-operative scores on open-set word and sentence materials for adult patients in the Melbourne Cochlear Implant Clinic who have been started up with the Spectra 22 speech processor.
  • Item
    Thumbnail Image
    Components of a rehabilitation programme for young children using the multichannel cochlear implant
    DETTMAN, SHANI ; Barker, Elizabeth ; RANCE, GARY ; DOWELL, RICHARD ; GALVIN, KARYN ; SARANT, JULIA ; COWAN, ROBERT ; Skok, Marisa ; Hollow, Rod ; Larratt, Merran ; Clark, Graeme M. (Whurr, 1996)
    Rehabilitation with young hearing-impaired children may be defined as a teaching; learning process where the role of the clinician is to facilitate acquisition of listening, speech and language in a normal developmental order. This is often referred to as habilitation. It differs from rehabilitation for adults, which is the process by which lost communication skills are reacquired. It is worth discussing the role of the cochlear implant as a tool in this process. For the adult with acquired hearing loss, the cochlear implant might be expected, in part, to facilitate rehabilitation by restoring the auditory sense. The aim is to facilitate speech reception and provide the adult with a speech feedback loop. For a child receiving the cochlear implant, the aims are more complex. The device needs to provide speech perception abilities to facilitate the development of the entire linguistic system, to develop a range of speech sounds, to enable speech monitoring via auditory feedback and to access shared knowledge of the world. (From Introduction)
  • Item
    Thumbnail Image
    Speech perception for children with different levels of residual hearing using the cochlear 22-channel cochlear prosthesis [Abstract[
    Cowan, R. S. C. ; Galvin, K. L. ; Barker, E. J. ; Del Dot, J. ; Sarant, J. Z. ; Dettman, S. ; Hollow, R. ; Herridge, S. ; Rance, G. ; Larratt, M. ; Skok, M. ; Dowell, R. C. ; Pyman, B. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1996)
    Over the past 10 years, since the implantation of the first children with the Nucleus 22-channel cochlear prosthesis in Melbourne, the number of profoundly deaf children using this implant system has rapidly expanded. Longer-term experience with implanted children has led to improvements in paediatric assessment and management. Speech processing strategies have also been improved, resulting in a series of increases in speech perception benefits. Results of comparative studies of Speak and Multipeak speech processing strategies have shown that open-set word and sentence scores for a group of thirteen children evaluated over a two year period showed an advantage with the Speak speech processing strategy. The increases were noted particularly in speech perception in poor signal-to-noise conditions. Analysis has shown that consonant perception was significantly increased, due to an improved place perception. Given current speech perception scores for implanted children, it has been suggested that severely-to-profoundly deaf children currently using hearing aids could in fact benefit more from a cochlear implant. Preliminary investigation of results for children in the Melbourne and Sydney cochlear implant programs has shown that children with higher levels of preoperative residual hearing as a group do score significantly on open-set word and sentence perception tests using the implant alone. In children with lower levels of residual hearing, results were variable across the group.
  • Item
    Thumbnail Image
    Continuing improvements in speech processing for adult cochlear implant patients
    Hollow, R. D. ; Dowell, R. C. ; Cowan, R. S. C. ; Skok, M. C. ; Pyman, B. C. ; Clark, Graeme M. ( 1995)
    The Cochlear 22-channel cochlear implant has employed a succession of improved speech-processing strategies since its first use in an adult patient in Melbourne in 1982. 1 The first patients received the F0F2 coding strategy developed by the University of Melbourne, in the Wearable Speech Processor (WSP). The F0F2 coding scheme presented the implant user with three acoustic features of speech. These were 1) the amplitude of the waveform, presented as the amount of current charge, 2) fundamental frequency (F0) or voice pitch, presented as rate of biphasic pulsatile stimulation, and 3) the spectral range of the second formant frequency (F2), which was represented by varying the site of stimulation along the electrode array.
  • Item
    Thumbnail Image
    The progress of children using the multichannel cochlear implant in Melbourne
    Cowan, R. S. C. ; Dowell, R. C. ; Hollow, R. ; Dettman, S. J. ; Rance, G. ; Barker, E. J. ; Sarant, J. Z. ; Galvin, K. L. ; Webb, R. C. ; Pyman, B. C. ; Cousins, V. C. ; Clark, Graeme M. ( 1995)
    Multi-channel cochlear implantation in children began in Australia in 1985 and there are now close to 4000 profoundly deaf children and adolescents using the Australian implant system around the world. The aim of the implant procedure is to provide adequate hearing for speech and language development through auditory input. This contrasts with the situation for adults with acquired deafness where the cochlear implant aims to restore hearing for someone with well-developed auditory processing and language skills. As with adults, results vary over a wide range for children using the Multi-channel implant. Many factors have been suggested that may contribute to differences in speech perception for implanted children. In an attempt to better understand these factors, the speech perception results for children implanted in Melbourne were reviewed and subjected to statistical analysis. This has indicated that the amount of experience with the implant and the length of sensory deprivation are strongly correlated with perceptual results. This means that younger children are likely to perform better with an implant and that a number of years of experience are required for children to reach their full potential. The results have also indicated that educational placement and management play a crucial role in children reaching their potential. Overall, 60% of the children and adolescents in the study have reached a level of open-set speech understanding using the cochlear implant without lipreading.
  • Item
    Thumbnail Image
    Preoperative residual hearing as a predictor of postoperative speech scores for adult cochlear implant users [Abstract]
    COWAN, ROBERT ; HOLLOW, RODNEY ; DOWELL, RICHARD ; PYMAN, BRIAN ; Clark, Graeme M. ( 1994)
    The development of multiple channel cochlear implants has been a significant advance in the rehabilitation of profound hearing loss. Speech perception benefits have been particularly evident for postlinguistically deafened adults, who as a group have shown not only supplementation of lipreading scores but also significant comprehension of words and sentences using an implant alone, without the aid of lipreading. In many cases, patients are able to use their implant for telephone conversation. Speech perception benefits for adult users have increased with advances in speech processing and improved means of habilitation. These improvements in open-set speech benefits for adult users have resulted in a steady increase in group mean scores and a reevaluation of selection criteria for cochlear implantation. In the initial development of cochlear implants, only those with little or no residual hearing were considered as candidates. Current selection criteria now include those with substantial residual hearing, who may score up to 40% in the best-aided condition on word and sentence speech perception tests. In order to provide realistic expectations for prospective cochlear implant patients, it is important to establish the relationship of many preimplant factors to postimplant speech perception benefits. For severely hearing impaired adults, the relationship between preoperative residual hearing, as measured by aided word and sentence speech perception test scores, and postoperative speech perception benefits is of significant interest. Analysis of data collected over a 15 year period for adult patients is presented. The rationale for conducting full speech perception assessments for all potential cochlear implant patients is stressed.