Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 24
  • Item
    Thumbnail Image
    The development of speech perception in children using cochlear implants: effects of etiologic factors and delayed milestones
    PYMAN, BRIAN ; Blamey, Peter J. ; Lacy, Peter ; Clark, Graeme M. ; DOWELL, RICHARD ( 2000)
    Hypothesis: Speech perception outcomes for cochlear implantation of children vary over a wide range, and it is hypothesized that central pathologic states associated with certain causes of hearing impairment account for a substantial part of the variance. Study Design: A retrospective analysis was carried out to ascertain the relationships between speech perception, etiologic factors, and central pathologic states as indicated by preoperative delayed motor milestones and/or cognitive delays. Setting: Data were obtained from the pre-and postoperative records of patients attending a hospital cochlear implant clinic. Patients: Results for 75 consecutive patients up to age 5 years who underwent implantation were included in the study. Intervention: Patients received a 22-electrode cochlear prosthesis and were seen by the clinic for regular tune-up and assessments. Home-and school-based habilitation was recommended by the clinic. Main Outcome Measures: Speech perception measures were classified on a five-point scale to allow for different evaluation procedures at different ages and developmental stages. Results: The incidence of motor and cognitive delays were fairly evenly spread across etiologic factors, except for cytomegalovirus, which had a much higher than average incidence. Children with motor and/or cognitive delays were significantly slower than other children in the development of speech perception skills after implantation. Etiologic factors did not have a statistically significant effect on speech perception outcome. Conclusions: It is likely that central pathologic states account for a substantial part of the variance among children using cochlear implants. Specific indicators of central pathologic states should be used to assess a child's prognosis in preference to less specific information based on etiologic factors alone.
  • Item
    Thumbnail Image
    Contributing factors to improved speech perception in children using the nucleus 22-channel cochlear prosthesis
    Cowan, Robert S. C. ; Galvin, Karyn L. ; KLIEVE, SHARON ; Barker, Elizabeth J. ; Sarant, Julia Z. ; DETTMAN, SHANI ; Hollow, Rod ; RANCE, GARY ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. ( 1997)
    It has been established that use of multiple-channel intracochlear implants can significantly improve speech perception for postlinguistically deafened adults. In the development of the Nucleus 22-channel cochlear implant, there have been significant developments in speech processing strategies, providing additional benefits to speech perception for users. This has recently culminated in the release of the Speak speech processing strategy, developed from research at the University of Melbourne. The Speak strategy employs 20 programmable bandpass filters which are scanned at an adaptive rate, with the largest outputs of these filters presented to up to ten stimulation channels along the electrode array. Comparative studies of the Speak processing strategy (in the Nucleus Spectra-22 speech processor), with the previously-used Multipeak (Multipeak) speech processing strategy (in the Minisystem-22 speech processor), with profoundly deaf adult cochlear implant users have shown that the Speak processing strategy provides a significant benefit to adult users both in quiet situations and particularly in the presence of background noise. Since the first implantation of the Nucleus device in a profoundly hearing-impaired child in Melbourne in 1985, there has been a rapid growth in the number of children using this device. Studies of cochlear implant benefits for children using the Nucleus 22-channel cochlear implant have also shown that children can obtain significant benefits to speech perception, speech production and language, including open-set understanding of words and sentences using the cochlear implant alone. In evaluating contributing factors to speech perception benefits available for children, four specific factors are important to investigate: (1) earlier implantation -resulting from earlier detection of deafness; (2) improved hardware and surgical techniques -allowing implantation in infants; (3) improved speech processing, and (4) improved habilitation techniques. Results reported previously have been recorded primarily for children using the Multipeak strategy implemented in the MSP speech processor. While it is important to evaluate the factors which might contribute to improvements in speech perception benefits, an important question is the effect of improved speech processing strategy, since this will determine what is perceived through the device. Given that adult patients changing to the Spectra speech processor had also shown improved perception in noisy situations, and the fact that children are in general in noisy environments in the classroom setting for a large proportion of their day, it was of obvious interest to evaluate the potential for benefit in poor signal-to-noise ratios from use of the Speak processing strategy and from specific training in the ability to perceive in background noise. The study was aimed at evaluating whether children who were experienced in use of the Multipeak speech processing strategy would be able to changeover to the new Speak processing strategy, which provides a subjectively different output. Secondly, the study aimed to evaluate the benefits which might accrue to children from use of controlled habilitation in background noise.
  • Item
    Thumbnail Image
    Speech perception results for children with implants with different levels of preoperative residual hearing
    Cowan, Robert S. C. ; DelDot, J. ; Barker, J. Z. ; Barker, Elizabeth J. ; Sarant, Julia Z. ; Pegg, P. ; Dettman, S. ; Galvin, K. L. ; Rance, G. ; Hollow, R. ; Dowell, R. C. ; Pyman, B. ; Gibson, W. P. R. ; Clark, Graeme, M. ( 1997)
    Objective: Many reports have established that hearing-impaired children using the Nucleus 22 channel cochlear implant may show both significant benefits to lipreading and significant scores on open-set words and sentences using electrical stimulation only. These findings have raised questions about whether severely or severely-to-profoundly deaf children should be candidates for cochlear implants. To study this question, postoperative results for implanted children with different levels of preoperative residual hearing were evaluated in terms of speech perception benefits. Study Design/Setting: A retrospective study of the first 117 children, sequentially, to undergo implantation in the Melbourne and Sydney Cochlear Implant Clinics was undertaken. All children had been assessed by and received their implants in a tertiary referral centre. Main Outcome Measures: To assess aided residual hearing, the children were grouped into four categories of hearing on the basis of their aided residual hearing thresholds measured preoperatively. To assess benefits, the scores of children on standard speech perception tests were reviewed. As different tests were used for children with different ages and language skills, children were grouped into categories according to the level of postoperative speech perception benefit. Results: The results showed that children in the higher categories of aided preoperative residual hearing showed significant scores on open-set word and sentence perception tests using the implant alone. For children in lower categories of aided residual hearing, results were variable within the groups. More than 90% of children with implants with aided residual hearing thresholds in the speech range above I kHz achieved open-set understanding of words and sentences. Conclusion: While the results of this preliminary study confirm previous findings of differential outcomes for children with different levels of preoperative residual hearing, they suggest that children with severe to profound hearing impairments should be considered for cochlear implantation.
  • Item
    Thumbnail Image
    Potential and limitations of cochlear implants in children
    Dowell, R. C. ; Blamey, P. J. ; Clark, Graeme M. ( 1995)
    Multiple-channel cochlear implants have been in use with children and adolescents for 8 years. The speech perception, speech production, and language of many of these children has been investigated in some detail.l-4 There have been many predictions about factors that may affect the performance of children with implants. For instance, it has been suggested that children with a congenital loss of hearing would not have the same potential to benefit from a cochlear implant as those with an acquired loss. Similarly, it has been suggested that younger children are likely to gain more benefit from a cochlear implant because of the effect of various critical ages for language learning.5 As more results have become available, it has been our observation that the performance of any particular child with a cochlear implant does not appear to follow well-defined rules, and that generalizations about the potential of certain groups of children are likely to encounter many exceptions. We now have a large quantity of results for children using cochlear implants, and it may be possible to determine some of the factors that have a significant effect on performance. This paper will attempt to identify some of these factors by reviewing speech perception results for 100 children implanted with the Nucleus 22-channel cochlear prosthesis in Australia and speech perception results for adult patients. This analysis will use an "information processing" model of a child using a cochlear implant. That is, we will assume that a child will benefit from a cochlear implant in terms of speech perception, production, and language development, if he or she receives a maximal amount of auditory information from the environment, and is able to process this information successfully. This model divides potential limiting or predictive factors into those that affect the information presented to the auditory system (eg, implant technology, surviving auditory neurons) and those that affect the processing of this information (eg, development of central auditory pathways, amount and consistency of auditory input).
  • Item
    Thumbnail Image
    Signal processing for multichannel cochlear implants: past, present and future [Abstract]
    DOWELL, RICHARD ; SELIGMAN, PETER ; MCDERMOTT, HUGH ; Whitford, Lesley ; BLAMEY, PETER ; Clark, Graeme M. ( 1994)
    Since the late 1970's, many groups have worked on developing effective signal processing for multichannel cochlear implants. The main aim of such schemes has been to provide the best possible speech perception for those using the device. Secondary aims of providing awareness and discrimination of environmental sounds and appreciation of music have also been considered. Early designs included some that attempted to simulate the normal cochlea. The application of such complex processing schemes was limited by the technology of the times. In some cases, researchers reverted to the use of single channel systems which could be controlled reliably with the existing technology. In other cases, as with the Australian implant, a simple multichannel processing scheme was devised that allowed a reliable implementation with available electronics. Over the next 15 years, largely due to the improvements in integrated circuit technology, the signal processors have slowly become more complex. Further psychophysical research has shown how additional information can be transferred effectively to implant users via electrical stimulation of the cochlea. This has lead to rapid improvement in the speech perception abilities of adults using cochlear implants. Some of the main developments in signal processing over the last 15 years will be discussed along with the latest speech perception results obtained with the new SPEAK processing scheme for the Australian 22-channel cochlear implant. Initial results for SPEAK show mean scores of 70% (equivalent to 85-90% phoneme scores) for open set monosyllabic word testing for experienced adult users. Although there remains a large range of performance for all users of cochlear implants, average speech perception scores for all implanted adults have also improved significantly with the developments in signal processing. It appears likely that multichannel cochlear implants will be a viable alternative for the treatment of severe hearing loss in the future.
  • Item
    Thumbnail Image
    Issues in long-term management of children with cochlear implants and tactile devices [Abstract]
    COWAN, ROBERT ; DOWELL, RICHARD ; Barker, Elizabeth ; GALVIN, KARYN ; DETTMAN, SHANI ; SARANT, JULIA ; RANCE, GARY ; Hollow, Rod ; BLAMEY, PETER ; Clark, Graeme M. ( 1994)
    For many children with severe and profound hearing losses, conventional hearing aids are unable to provide sufficient amplification to ensure good oral communication and/or in the case of very young children, development of speech and language. Traditionally a number of these children have opted for the use of sign language alone or in Total Communication approaches as a primary means of communication. The advent of multiple channel cochlear implants for children and the continuing development of multiple channel speech processing tactile devices provide auditory approaches to resolving communication difficulties for these children. The successful use of such devices depends on a number of factors including the information provided through the aid; the ease of use, convenience and reliability of the aid; the individual communication needs of the child; and the habilitation and management program used with the device. Long-term data has shown that children continue to show increased speech perception benefits from improvements in speech processing and from further experience with these devices. Habilitation and management programs must therefore be geared to meet the changing needs of children as they progress and of families as children mature and face new challenges. Habilitation must address specific individual needs in speech perception and in speech production. For very young children, benefits of improved speech perception should have an impact on the development of speech and language, and habilitation and management must emphasise the need for language growth.
  • Item
    Thumbnail Image
    Cochlear implants in children: unlimited potential? [Abstract]
    DOWELL, RICHARD ; Clark, Graeme M. ( 1994)
    Multichannel cochlear implants have been in use for adolescents for 8 years and for children for 6 years. Due to the substantial benefits obtained by postlinguistically deafened adults using multichannel implants, there was a degree of optimism about the potential benefits for profoundly hearing impaired children using these devices. It was speculated that children may adapt more quickly and learn to use information from implants more effectively than adults. On the other hand, there were cautionary predictions that there may be a "critical age", particularly for congenitally or early deafened children, that, once passed, would preclude effective use of auditory information from implants. This age was variously predicted to be anywhere from 2 to 12 years, based on neurophysiological, developmental or psychological arguments. With some years of experience with implanted children, it can now be said that neither the optimistic nor the more cautionary "critical age" predictions have been supported. As with many areas of clinical science, the situation appears to be far more complex than first thought. This paper will discuss the results obtained for 100 children using the multichannel cochlear implant in Sydney and Melbourne in terms of predictive factors, and the potential for the future application of multichannel cochlear implants in children. The results suggest that experience with implant, the number of years of auditory deprivation, the amount of preoperative residual hearing, and the postoperative educational environment may have a significant effect on speech perceptual abilities in implanted children. In addition, approximately 60% of all implanted children show significant open-set speech perception ability with auditory input alone. It is now possible for multichannel cochlear implants to provide auditory skills sufficient for young children to develop functionally normal speech and language through audition, provided consistent, long term habilitation is available.
  • Item
    Thumbnail Image
    Speech perception for adults using cochlear implants
    Dowell, Richard C. (Whurr, 1994)
    A mere 16 years ago, the title of this chapter would have created considerable consternation in audiological circles. A high proportion of otologists and audiologists would have wondered, with good reason, about the potential content of such a chapter. In 1977, there were certainly cochlear implants in use with reported benefits, but reliable documentation of any useful speech perception under controlled conditions was difficult to find. The rapid development of cochlear prostheses since that time has led to thousands of profoundly hearing-impaired adults obtaining benefits for speech perception, and there is now no doubt regarding the efficacy of such devices. This chapter will provide a brief overview of this rapid improvement in the speech perception of adult cochlear implant users, consider some of the reasons for this improvement, and discuss some of the factors that may influence speech perception performance for the individual user. (From Introduction)
  • Item
    Thumbnail Image
    Habilitation issues in the management of children using the cochlear multiple-channel cochlear prosthesis
    Cowan, Robert S. C. ; Barker, Elizabeth J. ; Dettman, Shani J. ; Blamey, Peter J. ; RANCE, GARY ; Sarant, Julia Z. ; Galvin, Karyn L. ; Dawson, Pam W. ; Hollow, Rod ; Dowell, Richard C. ; PYMAN, BRIAN ; Clark, Graeme M. (Wien, 1994)
    Since 1985, a significant proportion of patients seen in the Melbourne cochlear implant clinic have been children. The children represent a diverse population, with both congenital and acquired hearing-impairments, a wide-range of hearing levels pre-implant, and an age range from 2 years to 18 years. The habilitation programme developed for the overall group must be flexible enough to be tailored to the individual needs of each child, and to adapt to the changing needs of children as they progress. Long-term data shows that children are continuing to show improvements after 5-7 years of device use, particularly in their perception of open-set words and sentences. Habilitation programs must therefore be geared to the long-term needs of children and their families. Both speech perception and speech production need to be addressed in the specific content of the habilitation program for any individual child. In addition, for young children, the benefits of improved speech perception should have an impact on development of speech and language, and the focus of the programme for this age child will reflect this difference in emphasis. Specific materials and approaches will vary for very young children, school-age and teenage children. In addition, educational setting will have a bearing on the integration of listening and device use into the classroom environment.
  • Item
    Thumbnail Image
    Multichannel cochlear implantation in children: a summary of current work at The University of Melbourne
    Dowell, Richard C. ; Dawson, Pam W. ; Dettman, Shani J. ; Shepherd, Robert K. ; Whitford, Lesley A. ; Seligman, Peter M. ; Clark, Graeme M. ( 1991)
    This paper summarizes research work relating to multichannel cochlear implantation in children at the University of Melbourne. Ongoing safety studies relating to the implantation of young children are discussed. Results of these studies suggest that special design considerations are necessary for a prosthesis to be implanted in children under the age of 2 years. Results of clinical assessment of implanted children and adolescents are also discussed in terms of speech perception, speech production, and language development, and some possible predictive factors are suggested. Preliminary data suggests that a high proportion of young children can achieve open-set speech perception with the cochlear implant given appropriate training and support. Initial results with adults using new speech processing hardware and a new coding scheme are also presented. These suggest that improved speech perception in quiet and competing noise is possible with the new system.