Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 18
  • Item
    Thumbnail Image
    Architecture of the Spectra 22 speech processor
    Seligman, P. ; MCDERMOTT, H. ( 1995)
    The Spectra 22 is a logical extension in the development of the speech processing for the Cochlear Mini 22 system. It can implement the new coding strategy (Speak) that has provided significant improvement in patient benefit.
  • Item
    Thumbnail Image
    Coding of voice source information in the Nucleus cochlear implant system
    Jones, P. A. ; McDermott, H. J. ; Seligman, P. M. ; Millar, J. B. ( 1995)
    Two studies are reported in which the effectiveness of explicitly coding voicing and fundamental frequency information for the Nucleus cochlear implant was investigated. ln the first study, the voicing perception of a group of three experienced Multipeak users was evaluated when they were using Multipeak and a modified Multipeak in which the explicit fundamental frequency and voicing cues were eliminated and replaced with a 250-Hz constant rate of stimulation. The results of consonant and monosyllabic word tests showed that there was no significant difference in the subjects' ability to discriminate voicing. In the second study, the ability of a group of five experienced users of the constant rate spectral maxima sound processor (SMSP) strategy to discriminate suprasegmental contrasts was evaluated when they were using the SMSP strategy and a modified SMSP strategy that included a rate-encoded representation of the fundamental frequency on the most apical stimulation channel. The results of intonation, roving stress, and question-statement tests showed that there was no significant difference between the scores recorded with these strategies. Since the temporal voicing cue is not a primary cue to voicing discrimination for Multipeak users, and the provision of an additional rate cue to the SMSP strategy does not improve SMSP users' ability to discriminate suprasegmental contrasts, the results of these studies indicate that in the cases investigated, the coding of voice source information by rate of stimulation does not significantly augment the cues present in the spatially distributed constant rate stimulation pattern.
  • Item
    Thumbnail Image
    Evaluation of a new Spectral Peak coding strategy for the Nucleus 22 channel cochlear implant system
    Skinner, Margaret W. ; Clark, Graeme M. ; Whitford, Lesley A. ; Seligman, Peter M. ; Staller, Steven J. ; Shipp, David B. ; Shallop, Jon K. ; Everingham, Colleen ; Menapace, Christine M. ; Arndt, Patti L. ; Antogenelli, Trisha ; Brimacombe, Judith A. ; Pijl, Sipke ; Daniels, Paulette ; George, Catherine R. ; McDermott, Hugh J. ; Beiter, Anne L. ( 1994)
    Sixty-three postlinguistically deaf adults from four English-speaking countries participated in a 17-week field study of performance with a new speech coding strategy, Spectral Peak (SPEAK), and the most widely used strategy, Multipeak (MPEAK), both of which are implemented on wearable speech processors of the Nucleus 22 Channel Cochlear Implant System; MPEAK is a feature-extraction strategy, whereas SPEAK is a filterbank strategy. Subjects' performance was evaluated with an experimental design in which use of each strategy was reversed and replicated (ABAB). Average scores for speech tests presented sound-only at 70 dB SPL were higher with the SPEAK strategy than with the MPEAK strategy. For tests in quiet, mean scores for medial vowels were 74.8 percent versus 70.1 percent; for medial consonants, 68.6 percent versus 56.6 percent; for monosyllabic words, 33.8 percent versus 24.6 percent; and for sentences, 77.5 percent versus 67.4 percent. For tests in noise, mean scores for Four-Choice Spondees at +10 and +5 dB signal-to-noise ratio (S/N) were 88.5 percent versus 73.6 percent and 80.1 percent versus 62.3 percent, respectively; and for sentences at +15 dB, +10, and +5 dB S/N, 66.5 percent versus 43.4 percent, 61.5 percent versus 37.1 percent, and 60.4 percent versus 31.7 percent, respectively. Subjects showed marked improvement in recognition of sentences in noise with the new SPEAK filterbank strategy. These results agree closely with subjects' responses to a questionnaire on which approximately 80 percent reported they heard best with the SPEAK strategy for everyday listening situations.
  • Item
    Thumbnail Image
    The spectral maxima sound processor: recent findings in speech perception and psychophysics
    McKay, Colette M. ; McDermott, Hugh J. ; Vandali, Andrew E. ; Clark, Graeme M. (Wien, 1994)
    The Spectral Maxima Sound Processor (SMSP) was developed at the University of Melbourne for use with the Mini System 22 implant manufactured by Cochlear Pty Ltd. The SMSP has been shown in recent studies to provide improved speech perception to implantees when compared to the currently commercially available processor for this implant (the MSP (MULTIPEAK) processor). In the first of three experiments, the effect on speech perception of increasing the rate of stimulation of the SMSP and of increasing the number of electrodes activated in each stimulation cycle was studied. It was found that these parameter changes made little difference to speech perception in quiet but both changes were advantageous for some subjects when listening in noise. The second and third experiments investigated psychophysically the effects of two aspects of the SMSP strategy which differ from previous processors for this implant. In the second experiment, it was found that concurrent stimulation of two adjacent or nearby electrodes evoked a pitch which was intermediate to that of either electrode. This may explain, in part, the better discrimination of vowel formants by users of the SMSP. In the third experiment, it was found that a pitch related to the modulation frequency was evoked by amplitude-modulating a constant rate stimulus, provided that the rate of stimulation was sufficiently high (four times the modulation frequency) or a multiple of the modulation frequency. This result may explain the equal ability of SMSP and MSP users to perceive speaker differences and intonation patterns, even though the rate of stimulation is constant In the SMSP.
  • Item
    Thumbnail Image
    A portable programmable digital sound processor for cochlear implant research
    McDermott, Hugh J. ; Vandali, Andrew E. ; van Hoesel, Richard J. M. ; McKay, Colette M ; HARRISON, MARK ; Cohen, Lawrence T. ( 1993)
    A programmable sound processor which utilizes digital signal processing has been developed for hearing prosthesis research. It incorporates a Motorola DSP56001 integrated circuit, 32K words of memory, a 12 b analog-to-digital converter, and a data formatter and transmitter which conveys control codes to the receiver-stimulator of a cochlear implant. The processor is pocket-sized and battery powered. It has been programmed to emulate the Spectral Maxima Sound Processor for the University of Melbourne/Nucleus 22 electrode implant, and is currently being used by several implantees. In continuing research, speech processing programs are being improved, and other applications, including signal processing for binaural implants and advanced hearing aids, are being developed.
  • Item
    Thumbnail Image
    A new portable sound processor for the University of Melbourne/ Nucleus Limited multielectrode cochlear implant
    McDermott, Hugh J. ; McKay, Colette M. ; Vandali, Andrew E. ( 1992)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Place pitch perception with multiple electrode cochlear implants: the use of concurrent activation of nearby electrodes to produce additional ptich percepts [Abstract]
    McDermott, Hugh J. ; McKay, Colette M. ( 1992)
    In multiple electrode cochlear implants, each electrode produces a pitch percept which is usually related monotonically to its distance from the round window. The number of these pitch percepts is limited by the number of usable electrodes and their discriminability, varying up to a maximum of 22 for the mini-system 22 implant but sometimes significantly less. A study on two implanted subjects in which the pitch of pulse trains on two concurrently activated nearby electrodes was compared with the pitch produced when each of the electrodes was activated on its own, showed that the pitch of the concurrently activated electrodes was different from each component electrode and was placed in an intermediate position. Furthermore the pitch of the concurrent stimulation could be altered by adjusting the relative current levels on the two component electrodes. This may partly explain the improvements, particularly in vowel discrimination, obtained with the SMSP strategy described in the accompanying paper.
  • Item
    Thumbnail Image
    Preliminary results with a six spectral maxima speech processor for The University of Melbourne/Nucleus multiple electrode cochlear implant
    McKay, Colette M. ; McDermott, Hugh J. ; VANDALI, ANDREW ; Clark, Graeme M. ( 1991)
    An improved sound processor for a multiple-channel cochlear implant hearing prosthesis has been developed. The spectral maxima sound processor (SMSP) extracts the six largest frequency components of speech and presents stimuli at a rate of 250 Hz to electrodes at positions selected on the basis of the spectral frequencies. It was designed for use initially with the advanced cochlear implant recently developed at the University of Melbourne, which is capable of high rate and quasi-simultaneous stimulation. The present study, however, was carried out with two subjects who have the more widely used 22-electrode implant produced commercially by Cochlear Pty Limited (formerly Nucleus Limited). Preliminary results comparing the performance of the SMSP with that of previous speech processing techniques (F0/F1/F2 strategy) are presented. The results indicate that the SMSP is capable of providing implanters with significantly greater information about speech.
  • Item
    Thumbnail Image
    Speech cues for cochlear implantees: spectral discrimination
    Henry, Belinda, A. ; McKay, Colette M. ; McDermott, Hugh, J. ; Clark, Graeme M. (Monduzzi Editore, 1997)
    The relationship between the ability of cochlear implantees to perceive speech and their ability to discriminate between stimulation on adjacent electrodes was investigated. Speech perception ability was assessed with monosyllabic words in 8 users Nucleus cochlear prosthesis. The ability of these subjects to discriminate between stimulation on adjacent electrodes, in of random loudness differences between electrodes was determined. Results were averaged in the apical, mid and basal regions of the cochlea. Regression analysis showed that speech perception ability and electrode discrimination ability were correlated in the apical to mid region of the cochlea. but the two factors were not correlated in the basal region. Therefore, these results suggest that implantees require the ability to discriminate between stimulation on adjacent electrodes in the apical to mid region of the cochlea in order to achieve high speech perception scores.
  • Item
    Thumbnail Image
    Speech cues for cochlear implantees: spectral discrimination [Abstract]
    Henry, Belinda, A. ; McKay, Colette M. ; McDermott, Hugh, J. ; Clark, Graeme M. ( 1997)
    The ability of cochlear implantees to understand speech varies over a wide range. While some implantees achieve scores close to 100 % open set word tests, other require visual cues to achieve a significant score on these tests. The focus of this research is to investigate reasons for the wide range of ability and therefore to improve the speech processors used by individual implantees. This study first investigated whether the relative importance of various frequency regions of the speech spectrum differs for implantees of different performance levels, and for implantee groups compared to normally hearing subjects.