Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    Short-term auditory memory in children using cochlear implants and its relevance to receptive language
    Dawson, P. W. ; Busby, P. A. ; McKay, C. M. ; Clark, Graeme M. ( 2002)
    The aim of this study was to assess auditory sequential, short-term memory (SSTM) performance in young children using cochlear implants (CI group) and to examine the relationship of this performance to receptive language performance. Twenty-four children, 5 to 11 years old, using the Nucleus 22-electrode cochlear implant, were tested on a number of auditory and visual tasks of SSTM. The auditory memory tasks were designed to minimize the effect of auditory discrimination ability. Stimuli were chosen that children with cochlear implants could accurately identify with a reaction time similar to that of a control group of children with normal hearing (NH group). All children were also assessed on a receptive language test and on a nonverbal intelligence scale. As expected, children using cochlear implants demonstrated poorer auditory and visual SSTM skills than their hearing peers when the stimuli were verbal or were pictures that could be readily labelled. They did not differ from their peers with normal hearing on tasks where the stimuli were less likely to be verbally encoded. An important finding was that the CI group did not appear to have a sequential memory deficit specific to the auditory modality. The difference scores (auditory minus visual memory performance) for the CI group were not significantly different from those for the NH group. SSTM performance accounted for significant variance in the receptive language performance of the CI group. However, a forward stepwise regression analysis revealed that visual spatial memory (one of the subtests of the nonverbal IQ test) was the main predictor of variance in the language scores of the children using cochlear implants.
  • Item
    Thumbnail Image
    The relationship between speech perception and electrode discrimination in cochlear implantees
    Henry, Belinda A. ; McKay, Colette M. ; McDermott, Hugh J. ; Clark, Graeme M. ( 2000)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Short-term auditory memory in children using cochlear implants and its relevance to receptive language [Abstract]
    Dawson, Pam ; BUSBY, PETER ; MCKAY, COLETTE ; Clark, Graeme M. ( 2000)
    Current work indicates that many children using cochlear implants are able to hear fine differences between speech sounds but are not progressing as wel1 as expected in receptive language ability. There is anecdotal evidence from teachers that some children using cochlear implants have poor short-term auditory memory ability, which may be impeding their language development. Temporal ordering and short-term memory storage capacity involve higher order processing. Severe auditory deprivation prior to implantation may have caused auditory processing deficits at a cortical level. This study aims to assess short-term, sequential, auditory memory ability in children using cochlear implants and to determine the relationship between this ability and receptive language ability. Short-term auditory memory ability has not been previously investigated in profoundly deaf children using hearing aids and/or cochlear implants. Twenty-four children using the 22-electrode cochlear implant were tested on five short-term sequential memory tasks, three with auditory stimuli and two with visual stimuli. There were 8 children in each of the age groups; 5-6 years, 7-8 years, and 9-11 years. Twenty-four age-matched, normally hearing children served as a control group. Al1 children were also assessed on the receptive subtests of the CELF (Clinical Evaluation of Language Fundamentals) and on the nonverbal scale of the Kaufman Assessment Battery for Children (K-ABC) which measures nonverbal intelligence. This study assessed short-term auditory memory with tasks that required minimal language ability. Prior to the memory tasks, the child had to demonstrate accurate identification of the stimuli with a similar reaction time to the normally hearing controls. As expected there is a significant effect of age on memory performance for the 24 normally hearing children, with older children performing better than the younger children. The memory performance of the children using cochlear implants is therefore described in terms of its deviation from expected performance for a given chronological age. Preliminary results suggest that it is unlikely that auditory deprivation causes a memory deficit specific to the auditory modality. Performance on visual memory tasks is very similar to performance on analogous auditory memory tasks for a group of implant users. The performance of children using cochlear implants on a variety of memory tasks does not appear to be significantly different to that of normally hearing children who are of similar age and nonverbal intel1igence. In contrast their receptive language scores are substantially inferior.
  • Item
    Thumbnail Image
    Electrode discrimination and speech perception in young children using cochlear implants
    Dawson, P. W. ; McKay, C. M. ; Busby, P. A. ; Grayden, D. B. ; Clark, Graeme M. ( 2000)
    Objective: The aim was to determine the efficacy of a child-appropriate procedure to assess electrode discrimination ability in young children using cochlear implants and to investigate the relationship of electrode discrimination ability and speech perception performance in children implanted at a young age. Design: An adaptation of the play audiometry procedure was used to assess electrode discrimination in seventeen 4- to 10-yr-old children. The children were required to respond with a game-like motor response when a repeating stimulation on a reference electrode “changed” to a different electrode. They were also assessed on a speech feature discrimination test, a closed-set word recognition test and a nonverbal intelligence task. Results: Sixty-five percent of subjects demonstrated ability to discriminate adjacent electrodes in mid and apical regions of the cochlea, whilst the remaining subjects needed electrode separations of between two and nine electrodes for successful discrimination. In a forward stepwise regression analysis electrode discrimination ability was found to be the strongest factor in accounting for variance in the speech perception scores. Subject variables such as duration of deafness, nonverbal intelligence and implant experience did not significantly account for further variance in the speech perception scores for this group of children. Conclusions: Electrode discrimination ability was the strongest factor in predicting performance on speech perception measures in a group of children using cochlear implants.
  • Item
    Thumbnail Image
    A frequency importance function for a new monosyllabic word test
    Henry, Belinda A. ; McDermott, Hugh J. ; McKay, Colette M. ; James, Chris J. ; Clark, Graeme M. ( 1998)
    A frequency importance function, characterising the relative contribution of different frequency bands to speech intelligibility, was determined for a CNC monosyllabic word test designed for Australian usage at the University of Melbourne. The importance function was derived from the phoneme scores of 12 normally-hearing listeners who were tested under various conditions of low-and high-pass filtering presented at signal-to-noise ratios of -8 to +6 dB, using noise which was shaped across frequency 10 match the speech spectrum. The importance function showed a dominant peak at approximately 2000 Hz, which is consistent with previously published word test importance functions. The word test, along with the importance function, will be useful in advanced hearing-aid fitting procedures and research aimed at improving speech perception.
  • Item
    Thumbnail Image
    Improved sound processing for cochlear implants
    James, C.J. ; Just, Y. ; Knight, M.R. ; Martin, L.F.A. ; McKay, C.M. ; Plant, K.L. ; Tari, S. ; Vandali, A.E. ; Clark, Graeme M. ; Cowan, R.S.C. ; McDermott, H. J. ; Blamey, P. J. ; Dawson, P. ; Fearn, R. A. ; Grayden, D. B. ; Henshall, K. R. ( 2002)
    Four signal processing schemes currently under development aim to improve the perception of sounds/ especially speech, for children and adults using the Nucleus cochlear implant system. The schemes are (1) fast-acting input-signal compression, (2) Adaptive Dynamic Range Optimisation (ADRO), (3) TESM, a scheme that emphasises transients in signals, and (4) DRSP, a strategy that applies different stimulation rates to selected sets of electrodes.
  • Item
    Thumbnail Image
    Short-term auditory memory in children using cochlear implants
    Dawson, Pam W. ; Busby, Peter A. ; McKay, Colette M. ; Clark, Graeme M. ( 2001)
    There are many factors contributing to the variance in language performance of children using cochlear implants. Typically studies have investigated the predictive value of demographic factors such as duration of profound deafness. It is possible that profound auditory deprivation prior to implantation may have caused auditory processing deficits at a cortical level and, in particular, a deficit in short-term, sequential auditory memory. The aim of the study was to assess short-term sequential auditory memory ability in young children using cochlear implants and to investigate the relationship of this ability to receptive language performance.
  • Item
    Thumbnail Image
    Auditory processing abilities in children using cochlear implants: their relevance to speech perception [Abstract]
    Dawson, Pam W. ; McKay, Colette M. ; Busby, Peter A. ; Grayden, David B. ; Clark, Graeme M. ( 1999)
    This study aimed to investigate the relationships between some basic auditory processing skills, subject variables and speech perception ability in young children using cochlear implants. A modification of the play audiometry procedure was used to measure electrode discrimination and "rate-of-processing" ability in seventeen 4-10 year old children. In the electrode discrimination task, children responded with a game-like motor response when a repeating stimulation on a reference electrode "changed" to a different electrode. In the "rate-of processing" task, children had to respond to the "change" to a different electrode, when the duration of the stimuli and the time interval between the stimuli were decreased. Normally hearing children were assessed on this task with acoustic stimulation. Nonverbal intelligence, speech feature discrimination and closed-set word recognition were also measured in the children using implants.
  • Item
    Thumbnail Image
    Musical timbre perception investigated using forward-masking
    Stainsby, Thomas H. ; McDermott, Hugh J. ; McKay, Colette M. ; Clark, Graeme M. ( 1999)
    There is growing general interest in the perception of musical sounds by cochlear implantees. This study was aimed at the perception of one specific aspect of musical timbre, the shape of steady-state frequency spectra. The relationship of the physical and internal spectral shapes was investigated using a forward-masking technique. In addition, the ability of subjects to identify and discriminate selected musical sounds was tested in two related experiments.
  • Item
    Thumbnail Image
    Preliminary results on spectral shape perception and discrimination of musical sounds by normal hearing subjects and cochlear implantees
    Stainsby, Thomas H. ; McDermott, Hugh J. ; McKay, Colette M. ; Clark, Graeme M. ( 1997)
    This paper presents an overview of an ongoing research project investigating the perception of musical timbre by people with normal hearing, impaired hearing, and cochlear implants. The investigation of musical timbre has been limited to the perception of steady-state frequency spectra from 10 different sources, including sampled acoustic instruments, sung vowels, and synthetic waveforms. Subjects were tested in three different tasks: I) the discrimination of spectra when presented in all possible pairs; 2) the measurement of the internally-perceived frequency spectra using a forward-masking paradigm; and 3) the identification of the spectra by name with the restricted set of sound sources from which they were sampled. Preliminary results from the normally hearing subjects show the spectra to be 99.8% distinguishable, and that significant detail is evident in the internal spectral envelopes from different sounds. There was around 50%-correct identification of stimuli by name with the original sound sources from which they were sampled. The experimental work with hearing impaired and cochlear implant subjects has commenced.