Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    The auditory brainstem response in hearing and deaf cats evoked by intracochlear electrical stimulation
    Black, R. C. ; Clark, Graeme M. ; O'Leary, S. J. ; Walters, C. (Monash University Press, 1983)
    This study was performed to investigate in detail the auditory brainstem response (ABR) for intracochlear electrical stimulation. Brainstem response audiometry is a simple, noninvasive procedure with the responses under many stimulus conditions being readily understood in terms of single auditory nerve discharge properties. The amplitude and latency behaviour of the Nl brainstem response correlates well with that recorded directly from the auditory nerve (Huang & Buchwald, 1978). In addition, the brainstem response can be divided into frequency-specific components corresponding to tonotopical locations in the cochlea, as exhibited in the method of derived responses (e.g. Parker &Thornton, 1978). It is therefore well suited to both physiological and clinical investigation of auditory function and therefore should be useful in evaluating auditory function under conditions of electrical stimulation of the cochlea.
  • Item
    Thumbnail Image
    An improved model of electrical stimulation of the auditory nerve
    Bruce, I. ; Irlicht, L. S. ; White, M. ; O'Leary, S. J. ; Dynes, S. ; Javel, E. ; Clark, Graeme M. (Monduzzi Editore, 1997)
    Mathematical models are a useful means of formally describing and investigating pertinent features of complex systems such as the human auditory system. These features may be deduced from physiological and psychophysical experiments utilising animal models or humans, and from engineering studies. Historically, models of the auditory nerve's (AN) response to electrical stimulation have ignored randomness in single-fiber activity which has been recorded in physiological studies. These models, however, have been unable to accurately predict a number of important psychophysical phenomena. In this study, a model that incorporates random activity of the AN is presented, and is shown to predict psychophysical performance. These results indicate that random activity is indeed an important part of the response of the AN to electrical stimulation.