Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    A multiple-channel cochlear implant: an evaluation using nonsense syllables
    Clark, Graeme M. ; Tong, Yit Chow ; Martin, Lois F. ; Busby, Peter A. ; Dowell, Richard C. ; Seligman, Peter M. ; Patrick, James F. ( 1981)
    A study using nonsense syllables has shown that a multiple-channel cochlear implant with speech processor is effective in providing information about, voicing and manner and to a lesser extent place distinctions. These distinctions supplement lipreading cues. Furthermore, the average percentage improvements in overall identification scores for multiple-channel electrical stimulation and lipreading compared to lipreading alone were 71% for a laboratory-based speech processor and 122 % for a wearable unit.
  • Item
    Thumbnail Image
    Current distribution measurements within the human cochlea
    Black, Raymond C. ; Clark, Graeme M. ; Patrick, James F. ( 1981)
    The magnitudes of tile currents returned through each ground electrode line of a multiple-electrode cochlear implant array were determined during surgical implantations on two patients. These were often found to be distributed widely to points far from the stimulus electrode site. Further measurements made in in vitro solutions demonstrated that the distributions were due largely to the ground electrode interface impedances being significantly larger than the fluid-path impedances, and demonstrated that distributions could be changed by modification of the ground electrode interface impedances.
  • Item
    Thumbnail Image
    Speech processing for a multiple-electrode cochlear implant hearing prosthesis
    Tong, Y. C. ; Clark, Graeme M. ; Seligman, P. M. ; Patrick, J. F. ( 1980)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Implantation of the Melbourne/Cochlear multiple-electrode extracochlear prosthesis
    Franz, Burkhard K.-H. G. ; Kuzma, Janusz A. ; Lehnhardt, Ernst ; Clark, Graeme M. ; Patrick, James F. ; Laszig, Roland (Annals Publishing Co., 1989)
    The Melbourne/Cochlear multiple-electrode extracochlear implant is designed for deaf patients who are unsuited to multiple-electrode intracochlear implantation. The implant consists of a receiver-stimulator package connected via a lead wire assembly to six individual stimulating electrodes. There is a choice of two alternative surgical procedures, both of which are via a combined middle ear approach using anterior and posterior tympanotomies. Four active electrodes shaped into compressible platinum-iridium soft-balls are fed through the mastoid cavity and across the facial recess, and placed into cavities that are made over the cochlear turns that project to the medial wall of the middle ear. One hard-ball active electrode is placed into the round window niche. One hard-ball reference electrode is placed into the hypotympanum. An additional electrode wrapped around the lead wire assembly can be used as an alternative reference electrode. A specially designed insertion needle facilitates the placement and the fixation of the soft-ball electrodes.
  • Item
    Thumbnail Image
    The University of Melbourne/Nucleus cochlear prosthesis
    Clark, Graeme M. ; Blamey, P. J. ; Brown, A. M. ; Busby, P. A. ; Dowell, R. C. ; Franz, B. K-H. ; Millar, J. B. ; Pyman, B. C. ; Shepherd, R. K. ; Tong, Y. C. ; Webb, R. L. ; Brimacombe, J. A. ; Hirshorn, M. S. ; Kuzma, J. ; Mecklenburg, D. J. ; Money, D. K. ; Patrick, J. F. ; Seligman, P. M. ( 1988)
    This is a review of research to develop the University of Melbourne/Nucleus cochlear prosthesis for patients with a profound-total hearing loss. A more complete review can be obtained in Clark et al. A prototype receiver-stimulator and multiple-electrode array developed at the University of Melbourne was first implanted in a postlingually deaf adult patient with a profound-total hearing loss on 1 August 1978. A speech processing strategy which could help this patient understand running speech, especially when combined with lipreading was developed in 1978 following initial psychophysical studies. A prototype wearable speech processor was fabricated in 1979, that could provide significant help for the first two patients in understanding running speech when used in combination with lipreading compared with lipreading alone, and it also enabled them to understand some running speech when using electrical stimulation alone. An implantable receiver-stimulator and wearable speech processor embodying the principles of the prototype devices were then produced for clinical trial by the Australian biomedical firm, Nucleus Ltd, and its subsidiaries, Cochlear Pty Ltd and Cochlear Corporation. This cochlear implant was initially clinically trialled on six patients at The Royal Victorian Eye & Ear Hospital in 1982, and shown to give similar results to those obtained with the prototype device. In view of these findings a clinical trial was carried out for a Premarket Approval Application to the US Food and Drug Administration (FDA), and extended to a number of centres in the US, Canada, and West Germany. This clinical trial confirmed that patients could understand running speech when electrical stimulation was combined with lipreading, and that some patients could also understand running speech when using electrical stimulation alone. Today, more than 600 patients world-wide are using cochlear implants developed from the research described in this paper.
  • Item
    Thumbnail Image
    Recent developments with the Nucleus 22-electrode cochlear implant: a new two formant speech coding strategy and its performance in background noise
    Franz, Burkhard K-H. G. ; Dowell, Richard C. ; Clark, Graeme M. ; Seligman, Peter M. ; Patrick, James F. ( 1987)
    A clinical evaluation of speech processing strategies for the Nucleus 22-electrode cochlear implant showed improvements in understanding speech using the new F0F1F2 speech coding strategy instead of the F0F2 strategy. Significant improvement in closed-set speech recognition in the presence of background noise was an additional advantage of the new speech processing strategy.
  • Item
    Thumbnail Image
    A multiple-electrode intracochlear implant for children
    Clark, Graeme M. ; Blamey, Peter J. ; Busby, Peter A. ; Dowell, Richard C. ; Franz, Burkhard K-H. ; Musgrave, Gaye Nicholls ; Nienhuys, Terry G. ; Pyman, Brian C. ; Roberts, Susan A. ; Tong, Yit C. ; Webb, Robert L. ; Kuzma, Januz A. ; Money, David K. ; Patrick, James F. ; Seligman, Peter M. ( 1987)
    A multiple-electrode intracochlear implant that provides 21 stimulus channels has been designed for use in young children. It is smaller than the adult version and has magnets to facilitate the attachment of the headset. It has been implanted in two children aged 5 and 10 years. The two children both lost hearing in their third year, when they were still learning language. Following implantation, it was possible to determine threshold and comfortable listening levels for each electrode pair. This was facilitated in the younger child by prior training in scaling visual and electrotactile stimuli. Both children are regular users of the implant, and a training and assessment program has been commenced.
  • Item
    Thumbnail Image
    The histopathological effects of chronic electrical stimulation of the cat cochlea
    Shepherd, R. K. ; Clark, Graeme M. ; Black, R. C. ; Patrick, J. F. (Cambridge University Press, 1983)
    The success of a cochlear implant depends on stimulating an adequate number of viable spiral ganglion cells. The effect of chronic electrical stimulation on ganglion cells is therefore an important consideration when assessing the effectiveness and safety of such a device. The histopathological assessment of chronic unstimulated intracochlear electrodes is now well documented (Simmons, 1967; Clark, 1973; Clark et al, 1975; Schindler and Merzenich, 1974; Schindler, 1976; Schindler et al, 1977; Sutton et al, 1980). These experimental studies have used a variety of electrode designs, materials and surgical techniques. However, all have shown that chronic implantation has little effect on the peripheral nerves and the spiral ganglion cells adjacent to an implant, provided the insertion procedure is free of trauma and infection.
  • Item
    Thumbnail Image
    Design and fabrication of the banded electrode array
    Clark, Graeme M. ; Shepherd, R. K. ; Patrick, James F. ; Black, R. C. ; Tong, Y. C. ( 1983)
    A multiple-channel electrode array must meet certain design requirements; these are listed in TABLE 1. First, there should be no trauma associated with the surgical insertion, and if there is a need to replace the array, this procedure should also be atraumatic. Second, it should be biologically inert. This means that it should be biocompatible with the tissues. When placed in the cochlea, the array should also not predispose the patient to local infection, and this is particularly important in children, in whom recurrent middle ear infections could spread to the inner ear. There should also be no risk of carcinogenicity with long-term implantation. Third, the electrode array should be designed so that the stimulus current can be localized to discrete groups of nerve fibers, and it should also be possible to stimulate as many groups as possible from the total remaining nerve population. Fourth, with long-term stimulation, there should be no significant corrosion of the electrodes used, and the electrical stimulation should not lead to damage of the tissues in the cochlea, especially the residual nerve fibers. Fifth, the electrode array should be mechanically robust and stable. It should not be prone to break as a result of repeated stress by the acceleration of the head during everyday movements. The array should also be capable of being fixed in place so that it will not shift its position. Sixth, it is desirable that the means of fabrication of the multiple-channel array should be simple and inexpensive. (From Introduction)
  • Item
    Thumbnail Image
    The preliminary clinical trial of a multichannel cochlear implant hearing prosthesis
    Clark, Graeme M. ; Crosby, P. A. ; Dowell, R. C. ; Kuzma, J. A. ; Money, D. K. ; Patrick, J. F. ; Seligman, P. M. ; Tong, Y. C. ( 1983)
    Abstract not available due to copyright.