Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    A multiple-channel cochlear implant: an evaluation using nonsense syllables
    Clark, Graeme M. ; Tong, Yit Chow ; Martin, Lois F. ; Busby, Peter A. ; Dowell, Richard C. ; Seligman, Peter M. ; Patrick, James F. ( 1981)
    A study using nonsense syllables has shown that a multiple-channel cochlear implant with speech processor is effective in providing information about, voicing and manner and to a lesser extent place distinctions. These distinctions supplement lipreading cues. Furthermore, the average percentage improvements in overall identification scores for multiple-channel electrical stimulation and lipreading compared to lipreading alone were 71% for a laboratory-based speech processor and 122 % for a wearable unit.
  • Item
    Thumbnail Image
    Current distribution measurements within the human cochlea
    Black, Raymond C. ; Clark, Graeme M. ; Patrick, James F. ( 1981)
    The magnitudes of tile currents returned through each ground electrode line of a multiple-electrode cochlear implant array were determined during surgical implantations on two patients. These were often found to be distributed widely to points far from the stimulus electrode site. Further measurements made in in vitro solutions demonstrated that the distributions were due largely to the ground electrode interface impedances being significantly larger than the fluid-path impedances, and demonstrated that distributions could be changed by modification of the ground electrode interface impedances.
  • Item
    Thumbnail Image
    Speech processing for a multiple-electrode cochlear implant hearing prosthesis
    Tong, Y. C. ; Clark, Graeme M. ; Seligman, P. M. ; Patrick, J. F. ( 1980)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    A cochlear implant round window electrode array
    Clark, Graeme M. ; Patrick, J. F. ; Bailey, Q. (Cambridge University Press, 1979)
    One important aspect of cochlear implantation is the placement of a multiple-electrode array close to residual auditory nerve fibres so that discrete groups of fibres can be stimulated electrically according to the place basis of frequency coding. Furthermore, in patients who are postlingually deaf these electrodes should lie in relation to the nerve fibres which are responsible for transmitting the frequencies which are important in speech comprehension, viz. 300-3,000 Hz. The method of electrode insertion should also ensure that there is no significant damage to auditory nerve fibres.
  • Item
    Thumbnail Image
    A multiple-electrode cochlear implant
    Clark, Graeme M. ; Tong, Y. C. ; Bailey, Q. R. ; Black, R. C. ; Martin, L. F. ; Millar, J. B. ; O'Loughlin B. J. ; Patrick, J. F. ; Pyman, B. C. ( 1978)
    Interest in artificially stimulating the auditory nerve electrically for sensori-neural deafness was first sparked off by Volta in the 18th century. Count Volta, who was the first to develop the electric battery, connected up a number of his batteries to two metal rods which he inserted into his ears. Having placed the rods in his ears he pressed the switch and received "une secousse dans la tete" and perceived a noise like "the boiling of thick soup".
  • Item
    Thumbnail Image
    Design criteria of a multiple-electrode cochlear implant hearing prosthesis
    Clark, Graeme M. ; Black, R. C. ; Forster, I. C. ; Patrick, J. F. ; Tong, Y. C. ( 1978)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    The Nucleus 22-channel cochlear implant system
    Patrick, James F. ; Clark, Graeme M. ( 1991)
    Cochlear implants have become the treatment of choice for profoundly deaf adults and children who obtain little or no benefit from conventional amplification. Sounds are translated into small electric currents that stimulate the auditory nerves in the cochlea and generate hearing sensations. The Nucleus cochlear implant is the result of more than 20 yr of research and development, first at the University of Melbourne, Australia and later by Cochlear Proprietary Limited (Sydney, Australia) in collaboration with the University of Melbourne. Today, the cochlear Mini-22 implant system is approved by the United States Food and Drug Administration (FDA) for use in adults and children, and has been implanted in more than 3000 patients worldwide. Although this chapter describes the cochlear implant system and clinical issues related to its use in children, much of the material has been derived from experience with adults. Furthermore, the Nucleus system is not static. It is being continually improved both in performance and ease of use. The purpose of this chapter is to describe developments leading up to and including the present Nucleus cochlear implant system. Other chapters in this issue present results and procedures relating to pediatric applications of the device.
  • Item
    Thumbnail Image
    Implantation of the Melbourne/Cochlear multiple-electrode extracochlear prosthesis
    Franz, Burkhard K.-H. G. ; Kuzma, Janusz A. ; Lehnhardt, Ernst ; Clark, Graeme M. ; Patrick, James F. ; Laszig, Roland (Annals Publishing Co., 1989)
    The Melbourne/Cochlear multiple-electrode extracochlear implant is designed for deaf patients who are unsuited to multiple-electrode intracochlear implantation. The implant consists of a receiver-stimulator package connected via a lead wire assembly to six individual stimulating electrodes. There is a choice of two alternative surgical procedures, both of which are via a combined middle ear approach using anterior and posterior tympanotomies. Four active electrodes shaped into compressible platinum-iridium soft-balls are fed through the mastoid cavity and across the facial recess, and placed into cavities that are made over the cochlear turns that project to the medial wall of the middle ear. One hard-ball active electrode is placed into the round window niche. One hard-ball reference electrode is placed into the hypotympanum. An additional electrode wrapped around the lead wire assembly can be used as an alternative reference electrode. A specially designed insertion needle facilitates the placement and the fixation of the soft-ball electrodes.
  • Item
    Thumbnail Image
    The University of Melbourne/Nucleus cochlear prosthesis
    Clark, Graeme M. ; Blamey, P. J. ; Brown, A. M. ; Busby, P. A. ; Dowell, R. C. ; Franz, B. K-H. ; Millar, J. B. ; Pyman, B. C. ; Shepherd, R. K. ; Tong, Y. C. ; Webb, R. L. ; Brimacombe, J. A. ; Hirshorn, M. S. ; Kuzma, J. ; Mecklenburg, D. J. ; Money, D. K. ; Patrick, J. F. ; Seligman, P. M. ( 1988)
    This is a review of research to develop the University of Melbourne/Nucleus cochlear prosthesis for patients with a profound-total hearing loss. A more complete review can be obtained in Clark et al. A prototype receiver-stimulator and multiple-electrode array developed at the University of Melbourne was first implanted in a postlingually deaf adult patient with a profound-total hearing loss on 1 August 1978. A speech processing strategy which could help this patient understand running speech, especially when combined with lipreading was developed in 1978 following initial psychophysical studies. A prototype wearable speech processor was fabricated in 1979, that could provide significant help for the first two patients in understanding running speech when used in combination with lipreading compared with lipreading alone, and it also enabled them to understand some running speech when using electrical stimulation alone. An implantable receiver-stimulator and wearable speech processor embodying the principles of the prototype devices were then produced for clinical trial by the Australian biomedical firm, Nucleus Ltd, and its subsidiaries, Cochlear Pty Ltd and Cochlear Corporation. This cochlear implant was initially clinically trialled on six patients at The Royal Victorian Eye & Ear Hospital in 1982, and shown to give similar results to those obtained with the prototype device. In view of these findings a clinical trial was carried out for a Premarket Approval Application to the US Food and Drug Administration (FDA), and extended to a number of centres in the US, Canada, and West Germany. This clinical trial confirmed that patients could understand running speech when electrical stimulation was combined with lipreading, and that some patients could also understand running speech when using electrical stimulation alone. Today, more than 600 patients world-wide are using cochlear implants developed from the research described in this paper.
  • Item
    Thumbnail Image
    Recent developments with the Nucleus 22-electrode cochlear implant: a new two formant speech coding strategy and its performance in background noise
    Franz, Burkhard K-H. G. ; Dowell, Richard C. ; Clark, Graeme M. ; Seligman, Peter M. ; Patrick, James F. ( 1987)
    A clinical evaluation of speech processing strategies for the Nucleus 22-electrode cochlear implant showed improvements in understanding speech using the new F0F1F2 speech coding strategy instead of the F0F2 strategy. Significant improvement in closed-set speech recognition in the presence of background noise was an additional advantage of the new speech processing strategy.