Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Results in children using the 22 electrode cochlear implant [Abstract]
    Dawson, Pam W. ; Blamey, Peter J. ; Clark, Graeme M. ; Busby, P. A. ; Rowland, L.C. ; Dettman, S. J. ; Brown, A. M. ; Dowell, Richard C. ; Rickards, Field W. ; Alcantara, Joseph I. ( 1989)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Results for two children using a multiple-electrode intracochlear implant
    Busby, P. A. ; Tong, Yit C. ; Roberts, S. A. ; Altidis, P. M. ; Dettman, S. J. ; Blamey, Peter J. ; Clark, Graeme M. ; Watson, R. K. ; Rickards, Field W. ( 1989)
    Abstract not available due to copyright.
  • Item
    Thumbnail Image
    Steady-state evoked potentials to amplitude-modulated tones
    Rickards, F. W. ; Clark, Graeme M. (Butterworths, 1984)
    This study is an investigation of auditory evoked potentials (AEPs) to amplitude-modulated (AM) tones. The majority of AEP studies describe transient AEPs to pure tones and clicks. These potentials include the brainstem auditory evoked potentials (BAEPs) and the middle- and long-latency cortical potentials. By contrast, the cochlear microphic (CM) and the frequency-following response (FFR) are sustained potentials observed during a pure tone stimulus.
  • Item
    Thumbnail Image
    Evoked responses in humans to continuous amplitude modulated tones [Abstract]
    Rickards, F. W. ; Clark, Graeme M. ( 1982)
    The clinical use of the slow cortical auditory evoked responses and the auditory brainstem response is now widespread. Both of these responses look at the electrical changes in the brain following the onset of an acoustic stimulus and are known as transient responses. This paper will describe a technique of recording electrical potentials evoked during a continuous sinusoidally-modulated amplitude-modulated tone. This type of response is known as a steady-state response. The responses to this type of sound were found to be periodic, having the same fundamental frequencies as the modulation envelope. A Fourier transform was used to quantify the amplitude and phase of the first two harmonic components of the response. Responses can be recorded for modulation rates from 4Hz to 448Hz, for carrier frequencies from 250Hz to 4KHz and for sound pressure levels (SPLs) from 30dBSPL to 100dBSPPL. In general, the response amplitude increases with SPL. Estimates of latencies of these steady-state potentials can be made by measuring the phase of both harmonics as the modulation frequency is varied. Latencies suggest the auditory cortex as one of the sources of the response. The clinical implication of these results will be discussed.
  • Item
    Thumbnail Image
    Speech perception, production and language results in a group of children using the 22-electrode cochlear implant
    Busby, P. A. ; Brown, A. M. ; DOWELL, RICHARD ; Rickards, Field W. ; Dawson, Pam W. ; Blamey, Peter J. ; Rowland, L.C. ; Dettman, Shani J. ; Altidis, P. M. ; Clark, Graeme M. ( 1989)
    Paper presented at the 118th Meeting of the Acoustical Society of America
  • Item
    Thumbnail Image
    Results for the Nucleus multiple-electrode cochlear implant in two children [Abstract]
    Tong, Y. C. ; Blamey, P. J. ; Dowell, R. C. ; Nienhuys, T. G. ; Musgrave, G. N. ; Busby, P. A. ; Roberts, S. A. ; Rickards, F. W. ; Dettman, S. J. ; Altidis, P. M. ; Clark, Graeme M. ( 1988)
    Two males, 9 years 10 months (CHILD 1) and 5 years 5 months (CHILD 2) at time of surgery, were implanted with the Nucleus multiple-electrode cochlear implant. Both patients were deafened as a result of meningitis in their third year. Assessments of speech perception, speech production and language skills were undertaken at regular intervals, pre and post operatively. For both patients in the audition alone condition, some speech perception post operative scores were significantly higher than pre operative scores and progressive improvements in scores over successive post operative data collection times were seen. Significant differences between the visual alone and auditory-visual condition scores were also observed for CHILD 1 post operatively. Speech production post operative scores were significantly higher than pre operative scores for both patients. The receptive vocabulary scores for both patients improved at a higher rate than that of age-matched normal children. The acquisition of expressive and receptive language skills for CHILD 2 was at a higher rate than that of age-matched children. Differences in the results between the two patients were seen, and this may be related to age and duration of deafness.
  • Item
    Thumbnail Image
    Steady state evoked potentials to amplitude modulated tones [Abstract]
    Rickards, F. W. ; Clark, Graeme M. ( 1982)
    Evoked responses have been recorded from the scalp of normal human subjects to continuous sinusoidally-modulated amplitude-modulated tones. Phase locking the computer to the modulation envelope enabled an averaging technique to be used to improve the signal to noise ratio. The responses were found to be periodic with the same fundamental frequency as the modulation envelope. Fourier analysis was used to quantify the amplitude and phase of the first and second harmonic components of the responses. The variation of the response amplitude with SPL depended on the modulation and carrier frequency. At modulation frequencies of less than 20Hz and carrier frequencies of less than 1KHz, the amplitude of a response increases up to 50dBSPL but remains invariant at higher levels. At higher modulation frequencies, the response amplitude is uniform to 60-80dBSPL and then increases very rapidly, sometimes by as much as a factor of 20 for a 20dB increase in SPL. This is particularly true of high carrier frequencies. These amplitude growth functions can be explained in part by neural tuning curves. Phase locked responses ran be recorded down to 30dBSPL at most modulation rates and carrier frequencies. Estimates of latencies of these potentials were made by measuring the phase change of the first and second harmonic components whilst changing the modulation frequency. The latencies varied with modulation frequency, carrier frequency and SPL. Latencies of both first and second harmonic components fall into 14 discrete groups from 3msec up to 104msec, with the majority of responses having latencies of 9msec to 33msec. The origin of some of these responses is likely to be the auditory cortex.