Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 28
  • Item
    Thumbnail Image
    Engineering
    Patrick, James F. ; Seligman, Peter M. ; Clark, Graeme M. (Singular Publishing, 1997)
    The last two decades have seen major advances in cochlear implants for profoundly deaf people. Implants are now used by severely to profoundly deaf adults and children in almost every phase of daily life. They have become an established treatment, and today's expectations for all aspects of the cochlear implant system are much greater than they were for the experimental devices of the early 1980s. Hardware designs have improved to meet clinical and research demands, technological developments have made the devices smaller and more reliable, and speech processing research has yielded a series of improvements in patient benefit.
  • Item
  • Item
    Thumbnail Image
    Reduction in excitability of the auditory nerve in guinea pigs following acute high rate electrical stimulation [Abstract]
    Huang, C. Q. ; Shepherd, R. K. ; Seligman, P. M. ; Clark, Graeme M. ( 1996)
    Electrical stimulation of neural tissue involves the transfer of charge to tissue via electrodes. Safe charge transfer can be achieved using biphasic current pulses designed to reduce the generation of direct current (DC) or the production of electrochemical products. However, neural stimulators must also use capacitors in series with electrodes, or electrode shorting between current pulses, to further minimize DC due to electrode polarization.
  • Item
    Thumbnail Image
    Adjustment of appropriate signal levels in the Spectra 22 and Mini Speech processors
    Seligman, P. ; Whitford, L. ( 1995)
    The Spectra 22 speech processor has been described (Seligman and McDermott, this suppl, section 6). Figure 1 shows the audio signal path and means of mapping loudness in this processor and its predecessor, the Cochlear Pty Limited Mini Speech Processor (MSP). In both processors, following the microphone and preamplification, the signal level is adjusted by a sensitivity control. This control is the equivalent of the input gain of a hearing aid and is quite distinct from a loudness or maximum output level control. As will be explained later in this paper, the setting of the control is crucial to the effective functioning of the speech processor.
  • Item
    Thumbnail Image
    Impedance measurement of the Nucleus 22-electrode array in patients
    Swanson, B. ; Seligman, P. ; Carter, P. ( 1995)
    By means of a prototype 22-electrode cochlear implant with a telemetry ability, electrode voltage and impedances have been measured in three patients over a 2-month period. A simple electrical model of the electrode-tissue interface is described to explain the results.
  • Item
    Thumbnail Image
    Evaluation of the Nucleus Spectra 22 Processor and New Speech Processing Strategy (SPEAK) in postlinguistically deafened adults
    Whitford, Lesley A. ; Seligman, Peter M. ; Everingham, Colleen E. ; Antognelli, Trisha ; Skok, Marisa C. ; Hollow, Rodney D. ; Plant, Kerrie L. ; Gerin, Elvira S. ; Staller, Steve J. ; McDermott, Hugh J. ; Gibson, William R. ; Clark, Graeme M. ( 1995)
    A new speech processing strategy (SPEAK) has been compared with the previous Multipeak (MPEAK) strategy in a study with 24 postlinguistically deafened adults. The results show that performance with the SPEAK coding strategy was significantly better for 58.3% of subjects on closed-set consonant identification, for 33.3% of subjects on closed-set vowel identification and open-set monosyllabic word recognition, and for 81.8% of subjects on open-set sentence recognition in quiet and in competing noise (+ 10 dB signal-to-noise ratio). By far the largest improvement observed was for sentence recognition in noise, with the mean score across subjects for the SPEAK strategy twice that obtained with MPEAK.
  • Item
    Thumbnail Image
    Architecture of the Spectra 22 speech processor
    Seligman, P. ; MCDERMOTT, H. ( 1995)
    The Spectra 22 is a logical extension in the development of the speech processing for the Cochlear Mini 22 system. It can implement the new coding strategy (Speak) that has provided significant improvement in patient benefit.
  • Item
    Thumbnail Image
    Coding of voice source information in the Nucleus cochlear implant system
    Jones, P. A. ; McDermott, H. J. ; Seligman, P. M. ; Millar, J. B. ( 1995)
    Two studies are reported in which the effectiveness of explicitly coding voicing and fundamental frequency information for the Nucleus cochlear implant was investigated. ln the first study, the voicing perception of a group of three experienced Multipeak users was evaluated when they were using Multipeak and a modified Multipeak in which the explicit fundamental frequency and voicing cues were eliminated and replaced with a 250-Hz constant rate of stimulation. The results of consonant and monosyllabic word tests showed that there was no significant difference in the subjects' ability to discriminate voicing. In the second study, the ability of a group of five experienced users of the constant rate spectral maxima sound processor (SMSP) strategy to discriminate suprasegmental contrasts was evaluated when they were using the SMSP strategy and a modified SMSP strategy that included a rate-encoded representation of the fundamental frequency on the most apical stimulation channel. The results of intonation, roving stress, and question-statement tests showed that there was no significant difference between the scores recorded with these strategies. Since the temporal voicing cue is not a primary cue to voicing discrimination for Multipeak users, and the provision of an additional rate cue to the SMSP strategy does not improve SMSP users' ability to discriminate suprasegmental contrasts, the results of these studies indicate that in the cases investigated, the coding of voice source information by rate of stimulation does not significantly augment the cues present in the spatially distributed constant rate stimulation pattern.
  • Item
    Thumbnail Image
    Speech perception in children using the advanced Speak speech-processing strategy
    Cowan, R. S. C. ; Brown, C. ; Whitford, L. A. ; Galvin, K. L. ; Sarant, J. Z. ; Barker, E. J. ; Shaw, S. ; King, A. ; Skok, M. ; Seligman, P. M. ; Dowell, R. C. ; Everingham, C. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1995)
    The Speak speech-processing strategy, developed by the University of Melbourne and commercialized by Cochlear Pty Limited for use in the new Spectra 22 speech processor, has been shown to provide improved speech perception for adults in both quiet and noisy situations. The present study evaluated the ability of children experienced in the use of the Multipeak (Mpeak) speech-processing strategy (implemented in the Nucleus Minisystem-22 cochlear implant) to adapt to and benefit from the advanced Speak speech-processing strategy (implemented in the Nucleus Spectra 22 speech processor). Twelve children were assessed using Mpeak and Speak over a period of 8 months. All of the children had over 1 year's previous experience with Mpeak, and all were able to score significantly on open-set word and sentence tests using the cochlear implant alone. Children were assessed with both live-voice and recorded speech materials, including Consonant-Nucleus-Consonant monosyllabic words and Speech Intelligibility Test sentences. Assessments were made in both quiet and in noise. Assessments were made at 3-week intervals to investigate the ability of the children to adapt to the new speech-processing strategy. For most of the children, a significant advantage was evident when using the Speak strategy as compared with Mpeak. For 4 of the children, there was no decrement in speech perception scores immediately following fitting with Speak. Eight of the children showed a small (10% to 20%) decrement in speech perception scores for between 3 and 6 weeks following the changeover to Speak. After 24 weeks' experience with Speak, 11 of the children had shown a steady increase in speech perception scores, with final Speak scores higher than for Mpeak. Only 1 child showed a significant decrement in speech perception with Speak, which did not recover to original Mpeak levels.
  • Item
    Thumbnail Image
    Signal processing for multichannel cochlear implants: past, present and future [Abstract]
    DOWELL, RICHARD ; SELIGMAN, PETER ; MCDERMOTT, HUGH ; Whitford, Lesley ; BLAMEY, PETER ; Clark, Graeme M. ( 1994)
    Since the late 1970's, many groups have worked on developing effective signal processing for multichannel cochlear implants. The main aim of such schemes has been to provide the best possible speech perception for those using the device. Secondary aims of providing awareness and discrimination of environmental sounds and appreciation of music have also been considered. Early designs included some that attempted to simulate the normal cochlea. The application of such complex processing schemes was limited by the technology of the times. In some cases, researchers reverted to the use of single channel systems which could be controlled reliably with the existing technology. In other cases, as with the Australian implant, a simple multichannel processing scheme was devised that allowed a reliable implementation with available electronics. Over the next 15 years, largely due to the improvements in integrated circuit technology, the signal processors have slowly become more complex. Further psychophysical research has shown how additional information can be transferred effectively to implant users via electrical stimulation of the cochlea. This has lead to rapid improvement in the speech perception abilities of adults using cochlear implants. Some of the main developments in signal processing over the last 15 years will be discussed along with the latest speech perception results obtained with the new SPEAK processing scheme for the Australian 22-channel cochlear implant. Initial results for SPEAK show mean scores of 70% (equivalent to 85-90% phoneme scores) for open set monosyllabic word testing for experienced adult users. Although there remains a large range of performance for all users of cochlear implants, average speech perception scores for all implanted adults have also improved significantly with the developments in signal processing. It appears likely that multichannel cochlear implants will be a viable alternative for the treatment of severe hearing loss in the future.