Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 23
  • Item
  • Item
    Thumbnail Image
    Impedance measurement of the Nucleus 22-electrode array in patients
    Swanson, B. ; Seligman, P. ; Carter, P. ( 1995)
    By means of a prototype 22-electrode cochlear implant with a telemetry ability, electrode voltage and impedances have been measured in three patients over a 2-month period. A simple electrical model of the electrode-tissue interface is described to explain the results.
  • Item
    Thumbnail Image
    Architecture of the Spectra 22 speech processor
    Seligman, P. ; MCDERMOTT, H. ( 1995)
    The Spectra 22 is a logical extension in the development of the speech processing for the Cochlear Mini 22 system. It can implement the new coding strategy (Speak) that has provided significant improvement in patient benefit.
  • Item
    Thumbnail Image
    Coding of voice source information in the Nucleus cochlear implant system
    Jones, P. A. ; McDermott, H. J. ; Seligman, P. M. ; Millar, J. B. ( 1995)
    Two studies are reported in which the effectiveness of explicitly coding voicing and fundamental frequency information for the Nucleus cochlear implant was investigated. ln the first study, the voicing perception of a group of three experienced Multipeak users was evaluated when they were using Multipeak and a modified Multipeak in which the explicit fundamental frequency and voicing cues were eliminated and replaced with a 250-Hz constant rate of stimulation. The results of consonant and monosyllabic word tests showed that there was no significant difference in the subjects' ability to discriminate voicing. In the second study, the ability of a group of five experienced users of the constant rate spectral maxima sound processor (SMSP) strategy to discriminate suprasegmental contrasts was evaluated when they were using the SMSP strategy and a modified SMSP strategy that included a rate-encoded representation of the fundamental frequency on the most apical stimulation channel. The results of intonation, roving stress, and question-statement tests showed that there was no significant difference between the scores recorded with these strategies. Since the temporal voicing cue is not a primary cue to voicing discrimination for Multipeak users, and the provision of an additional rate cue to the SMSP strategy does not improve SMSP users' ability to discriminate suprasegmental contrasts, the results of these studies indicate that in the cases investigated, the coding of voice source information by rate of stimulation does not significantly augment the cues present in the spatially distributed constant rate stimulation pattern.
  • Item
    Thumbnail Image
    Speech perception in children using the advanced Speak speech-processing strategy
    Cowan, R. S. C. ; Brown, C. ; Whitford, L. A. ; Galvin, K. L. ; Sarant, J. Z. ; Barker, E. J. ; Shaw, S. ; King, A. ; Skok, M. ; Seligman, P. M. ; Dowell, R. C. ; Everingham, C. ; Gibson, W. P. R. ; Clark, Graeme M. ( 1995)
    The Speak speech-processing strategy, developed by the University of Melbourne and commercialized by Cochlear Pty Limited for use in the new Spectra 22 speech processor, has been shown to provide improved speech perception for adults in both quiet and noisy situations. The present study evaluated the ability of children experienced in the use of the Multipeak (Mpeak) speech-processing strategy (implemented in the Nucleus Minisystem-22 cochlear implant) to adapt to and benefit from the advanced Speak speech-processing strategy (implemented in the Nucleus Spectra 22 speech processor). Twelve children were assessed using Mpeak and Speak over a period of 8 months. All of the children had over 1 year's previous experience with Mpeak, and all were able to score significantly on open-set word and sentence tests using the cochlear implant alone. Children were assessed with both live-voice and recorded speech materials, including Consonant-Nucleus-Consonant monosyllabic words and Speech Intelligibility Test sentences. Assessments were made in both quiet and in noise. Assessments were made at 3-week intervals to investigate the ability of the children to adapt to the new speech-processing strategy. For most of the children, a significant advantage was evident when using the Speak strategy as compared with Mpeak. For 4 of the children, there was no decrement in speech perception scores immediately following fitting with Speak. Eight of the children showed a small (10% to 20%) decrement in speech perception scores for between 3 and 6 weeks following the changeover to Speak. After 24 weeks' experience with Speak, 11 of the children had shown a steady increase in speech perception scores, with final Speak scores higher than for Mpeak. Only 1 child showed a significant decrement in speech perception with Speak, which did not recover to original Mpeak levels.
  • Item
    Thumbnail Image
    The evolution continues: the clinical trials of the SPEAK strategy in Nucleus 22 channel cochlear implant users [Abstract]
    Antognelli, Trisha ; Whitford, Lesley ; SELIGMAN, PETER ; Everingham, Colleen ; Skok, Marisa ; Plant, Kerrie ; Hollow, Rod ; Staller, Steve ( 1994)
    Research in the field of cochlear implants continues in centres around the world. The aim of all centres is to improve the speech perception abilities of those children and adults fitted with a cochlear implant. Most recently the work of Hugh McDermott and Colette McKay (Melbourne University, Department of Otolaryngology) in developing and researching the SMSP (Spectral Maxima Sound Processor) has greatly enhanced the speech understanding abilities of a number of subjects implanted with the Nucleus 22 Channel Cochlear Implant.
  • Item
    Thumbnail Image
    Evaluation of a new Spectral Peak coding strategy for the Nucleus 22 channel cochlear implant system
    Skinner, Margaret W. ; Clark, Graeme M. ; Whitford, Lesley A. ; Seligman, Peter M. ; Staller, Steven J. ; Shipp, David B. ; Shallop, Jon K. ; Everingham, Colleen ; Menapace, Christine M. ; Arndt, Patti L. ; Antogenelli, Trisha ; Brimacombe, Judith A. ; Pijl, Sipke ; Daniels, Paulette ; George, Catherine R. ; McDermott, Hugh J. ; Beiter, Anne L. ( 1994)
    Sixty-three postlinguistically deaf adults from four English-speaking countries participated in a 17-week field study of performance with a new speech coding strategy, Spectral Peak (SPEAK), and the most widely used strategy, Multipeak (MPEAK), both of which are implemented on wearable speech processors of the Nucleus 22 Channel Cochlear Implant System; MPEAK is a feature-extraction strategy, whereas SPEAK is a filterbank strategy. Subjects' performance was evaluated with an experimental design in which use of each strategy was reversed and replicated (ABAB). Average scores for speech tests presented sound-only at 70 dB SPL were higher with the SPEAK strategy than with the MPEAK strategy. For tests in quiet, mean scores for medial vowels were 74.8 percent versus 70.1 percent; for medial consonants, 68.6 percent versus 56.6 percent; for monosyllabic words, 33.8 percent versus 24.6 percent; and for sentences, 77.5 percent versus 67.4 percent. For tests in noise, mean scores for Four-Choice Spondees at +10 and +5 dB signal-to-noise ratio (S/N) were 88.5 percent versus 73.6 percent and 80.1 percent versus 62.3 percent, respectively; and for sentences at +15 dB, +10, and +5 dB S/N, 66.5 percent versus 43.4 percent, 61.5 percent versus 37.1 percent, and 60.4 percent versus 31.7 percent, respectively. Subjects showed marked improvement in recognition of sentences in noise with the new SPEAK filterbank strategy. These results agree closely with subjects' responses to a questionnaire on which approximately 80 percent reported they heard best with the SPEAK strategy for everyday listening situations.
  • Item
    Thumbnail Image
    Formant-based processing for hearing aids
    Blamey, P. J. ; Dooley, G. J. ; Seligman, P. M. ; Alcantara, J. I. ; Gerin, E. S. ( 1994)
    A body-worn hearing aid has been developed with the ability to estimate formant frequencies and amplitudes in real time. These parameters can be used to enhance the output signal by "sharpening" the formant peaks, by "mapping" the amplitudes of the formants onto the available dynamic range of hearing at each frequency, or by resynthesizing a speech signal that is suited to the listener�s hearing characteristics. Initial evaluations have indicated small improvements in speech perception for three groups of subjects: users of a combined cochlear implant and speech processing hearing aid, normally hearing listeners in background noise, and a hearing aid user with a severe hearing loss.
  • Item
    Thumbnail Image
    Speech processing for cochlear implants
    Tong, Y. C. ; Millar, J. B. ; Blamey, P. J. ; Clark, Graeme M. ; Dowell, R. C. ; Patrick, J. F. ; Seligman, P. M. (JAI Press Ltd, 1992)
    The cochlear implant is a hearing prosthesis designed to replace the function of the ear. The operation of the prosthesis can be described as a sequence of four functions: the processing of the acoustic signal received by a microphone; the transfer of the processed signal through the skin; the creation of neural activity in the auditory nerve; and the integration of the experience of this neural activity into the perceptual and cognitive processing of the implantee.
  • Item
    Thumbnail Image
    A "Combionic Aid": Combined speech processing for a cochlear implant in one ear and speech processing hearing aid in the other ear [Abstract]
    Dooley, Gary J. ; Blamey, Peter J. ; Seligman, Peter M. ; Clark, Graeme M. ( 1993)
    Independent use of a cochlear implant in one ear and a hearing aid in the other is not acceptable for many implant users with some residual hearing. Psychophysical evidence suggests that there are substantial interactions between acoustic and electrical signals including masking and loudness summation. These effects may contribute to the difficulty in using two independent devices and it is desirable to control the parameters of the electrical and acoustical signals far more accurately than is possible with two independent devices with separate microphones. In order to achieve this control we have developed a Combionic aid incorporating an implant and an 'in1planlcompatible' hearing aid controlled from the same speech processor. The new processor is particularly flexible and can implement a wide variety of speech processing strategies for combined acoustic and electrical stimulation. A benchtop prototype has been tested with five patients using a range of different speech tests. In general, patients do better when they use acoustic and electrical information simultaneously than they do with either alone. Some patients on some tests perform significantly better with the bimodal aid than they do with independent hearing aids and implant processors worn together. Wearable devices have now been built and evaluations of these devices are continuing.