Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    High rate electrical stimulation of the auditory nerve: physiological and pathological results [Abstract]
    Shepherd, Robert K. ; XU, JIN ; TYKOCINSKI, MICHAEL ; Millard, Rodney, E. ; Clark, Graeme M. ( 1995)
    Previous experimental studies have shown that chronic electrical stimulation of the auditory nerve using charge balanced biphasic current pulses at rates of up to 500 pulses per second (pps) do not adversely affect the adjacent spiral ganglion population. More recently, a number of clinical trials have indicated that speech processing strategies based on high pulse rates (1000 pps and more), can further improve speech perception. In this paper we summarize our results following acute and chronic electrical stimulation of the auditory nerve using high pulse rates.
  • Item
    Thumbnail Image
    "Cochlear View" and its application in cochlear implant patients [Abstract]
    Xu, J. ; Xu, S. A. ; Clark, Graeme M. ; Marsh, M. A. ( 1994)
    Recent advances in multichannel intracochlear implantation have generated interests in correlating individual stimulating electrodes to pitch perception. An appropriate radiographic technique is required to precisely document the location of the implanted intracochlear electrode array. Anatomical studies, including the measurements of the temporal bone using high-resolution CT films and 3D reconstruction from the petrous bone sections, were conducted to define the spatial position of cochlea in the skull. Thus, a "Cochlear View" was designed and introduced for postoperative radiological evaluation of multichannel intracochlear implantation. In this paper, a detailed radiographic method and radiological interpretation of the "Cochlear View" are described. A plain radiograph of the "Cochlear View" was taken of 120 patients who had received the Nucleus multichannel implant. Studies have shown that a plain radiograph of the "Cochlear View" provides sufficient information to correctly evaluate the results of implantation, including the insertion depth and position of individual electrodes. It plays an important role in guiding the management of frequency mapping and acts as a useful reference for further research purposes.
  • Item
    Thumbnail Image
    Physiological and histopathological response of the cochlea to chronic electrical stimulation of the auditory nerve at high stimulus rates [Abstract]
    Shepherd, R. K. ; Xu, J. ; Clark, Graeme M. ( 1994)
    Previous research has shown that chronic electrical stimulation of the auditory nerve using charge balanced biphasic current pulses at rates of up to 500 pulses per second (pps) does not adversely affect the adjacent spiral ganglion population. More recently, a number of clinical trials have suggested that speech processing strategies based on high pulse rates (e.g. 1000 pps), can further improve speech perception. In the present study we evaluated the physiological and histopathological response of the cochlea following long-term stimulation using rates of 1000 pps. Thirteen normal hearing cats were bilaterally implanted with scala tympani electrodes and unilaterally stimulated using 25-50 �s per phase charge balanced biphasic current pulses presented at 1000 pps. Additional charge balance was achieved by shorting the electrodes between current pulses. Each animal was stimulated for periods ranging from 700 - 2100 hours at current levels within its dynamic range. Auditory brainstem responses to both acoustic (ABR) and electrical (EABR) stimuli were periodically recorded throughout the chronic stimulation program. At completion of the program the cochleas were prepared for histological examination. While all animals exhibited an increase in acoustic thresholds following surgery, click evoked ABR's returned to near normal levels in half the animals. Frequency specific stimuli indicated that the most extensive hearing loss occurred adjacent to the array (>12 kHz) while lower frequency thresholds appeared at or near normal Our EABR data showed that the majority of animals exhibited slight increases in threshold, although response amplitudes remained very stable for the duration of the stimulus program. The physiological data reported here will be correlated with cochlear histopathology. These initial findings suggest that chronic intracochlear electrical stimulation at high pulse rates, using a carefully designed charge balanced stimulator, does not appear to adversely affect the implanted cochlea.
  • Item
    Thumbnail Image
    Paediatric cochlear implantation: radiological and histopathological studies of skull growth in the monkey
    Shepherd, R. K. ; XU, JIN ; Burton, Martin J. ; Xu, Shi-Ang ; Seldon, H. Lee ; Franz, Burkhard K-H. G. ; Clark, Graeme, M. ( 1993)
    The human skull undergoes significant growth within the first two years of life (Dahm et aI, 1992). Therefore, before children under two can be considered candidates for cochlear implantation, the effects of the surgical procedure on subsequent skull growth must be well understood. To evaluate the effects of implantation on skull growth four macaque monkeys were implanted with dummy cochlear implants at six months of age. To model the procedure in the very young child, the bed for the receiver-stimulator was drilled across a calvarial suture down to the underlying dura and an electrode array inserted into the scala tympani via a mastoidectomy and posterior,tympanotomy. Plain skull radiographs were perioqical1y taken to monitor skull growth for periods of up to three years following implantation. Their longitudinal measurements revealed no evidence of asymmetrical skull growth when compared with unimplanted control animals. Computer tomographic scans taken at post-mortem confirmed these findings. Finally, subsequent histopathological evaluation of the receiver-stimulator package bed indicated that it becomes obliterated by hard tissue, resulting in a localized flattening of the vault under the receiver-stimulator. However, this tissue exhibited histological evidence of sutures, indicating that the surgical procedure should not lead to premature sutural closure. In conclusion, the present experimental results suggest that long-term cochlear implantation in very young children will not lead to any significant skull deformity.
  • Item
    Thumbnail Image
    Investigation of curved intracochlear electrode arrays [Abstract]
    Xu, Shi-Ang ; Xu, J. ; Seldon, H Lee. ; Shepherd, R. K. ; Clark, G. M. ( 1992)
    It has been demonstrated that the Melbourne/Cochlear multi-channel cochlear implant is safe and effective for use in profoundly-totally deaf patients. Recent studies have highlighted the importance of deaf insertion and placing the electrodes closer to the spiral ganglion neurons. In order to improve the electrode insertion depth and proximity to the modiolus, we have investigated curved electrode arrays. Prototypes of such arrays and their accessory inserter have been made. Trial insertions were performed on skeletonized cochleae of human temporal bones. The preliminary results showed that, when compared with conventional straight electrode arrays, the curved arrays could be inserted deeper and located closer to the modiolus. These findings indicate that the curved --.~ electrodes currently under investigation should result in a reduction in stimulus threshold and improve pitch perception and may also result in the use of more channels of stimulation.
  • Item
    Thumbnail Image
    Electrical stimulation of the auditory nerve: comparison of half-band with full-band scala tympani bipolar electrodes
    Xu, Shi-Ang ; McAnally, Ken I. ; Xu, J. ; Shepherd, R. K. ; Clark, Graeme M. ( 1993)
    The Melbourne/Cochlear auditory prosthesis uses an intracochlear electrode array containing 22 circumferential full-band electrodes mounted on a Silastic carrier. It could be hypothesized that half-band electrodes, oriented towards the modiolus, would produce lower stimulus thresholds than conventional full-band electrodes. This hypothesis is based on the assumption that, compared with full-band electrodes, half-band electrodes would produce an electrical field in which a greater proportion of the current would excite a defined group of neurons. In order to verify this hypothesis we recorded electrically evoked auditory brainstem responses (EABRs) for both full- and half-band electrodes inserted in the scala tympani of deafened cats. EABR thresholds for half-band electrodes oriented towards the modiolus were not significantly different from thresholds evoked using full-band electrodes (p>0.05, paired t-test), whereas thresholds evoked using half-band electrodes oriented towards the outer scala wall were significantly higher (p<0.01) than either the modiolar half-band or the full-band electrodes. These physiological results suggest that the electrical field generated within the auditory nerve by modiolar oriented half-band electrodes does not differ significantly from that produced by full-band electrodes. On the basis of these results, together with the fact that half-band electrodes would have higher current densities and electrode impedances, and would require careful orientation during implantation, we consider that there is no benefit in incorporating half-band electrodes in the design of scala tympani electrode arrays.
  • Item
    Thumbnail Image
    Cochlear implantation in young children: studies on head growth, leadwire design and electrode fixation in the monkey model [Abstract]
    Burton, Martin J. ; Xu, J. ; Shepherd, R. K. ; Xu, S-A. ; Seldon, H. L. ; Franz, B. K-H. G. ; Clark, Graeme M. ( 1992)
    For the safety of cochlear implantation in children under two, the implant assembly must not adversely effect the tissue of compromise head growth. Furthermore, growth changes and tissue responses should not impair functioning of the device. Dummy receiver-stimulators, interconnect plugs and leadwire-lengthening systems have been implanted for periods of 40 months in the young monkey to most effectively model the implantation of the young human child. The results show that implanting a receiver-stimulator package has no effect on skull growth or brain tissue under the package. The system for fixing the electrode at the fossa includes proved effective. There was marked osteoneogenesis in the mastoid cavity and this also resulted in fixation of the leadwire outside the cochlea. This study provides evidence for the safety of cochlear implantation in young children.