Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    The influence of electrode geometry on the electrically evoked auditory brain stem response
    Shepherd, R. K. ; Hatsushika, S. ; Clark, Graeme M. ( 1988)
    The electrically-evoked auditory brainstem response (EABR) consists of a series of far-field potentials that reflect synchronous neural activity within the auditory brainstem in response to a transient electrical stimulus. The EABR appears relatively simply organized in terms of its amplitude and latency behaviour. The growth in amplitude of wave IV of the EABR, for example, reflects changes in the amplitude of the electrically-evoked VIII nerve compound action potential as a function of stimulus intensity. In addition, single unit population studies have shown a monotonic relationship between the growth in EABR amplitude and the number of nerve fibres being stimulated (Merzenich and White, 1977). The EABR can therefore, provide an insight into the response of the auditory nerve to electrical stimulation. We have used this technique to investigate the efficacy of electrical stimulation of the auditory nerve using a variety of stimulating electrode geometries.
  • Item
    Thumbnail Image
    Electrical stimulation of the auditory nerve: stimulus induced reductions in neural excitability [Abstract]
    Shepherd, R. K. ; Clark, Graeme M. ( 1987)
    Electrical stimulation of the auditory nerve elicits highly synchronised neural activity (Javel et al., in press). As the stimulus current is increased the neural response becomes highly deterministic with every current pulse eliciting a spike even at stimulus rates of 600-800 pulses per second (pps). Our previous acute experimental studies have shown that high stimulus rates (> 200 pps) and high stimulus currents (> 1.0 mA) can result in temporary and sometimes permanent reductions in the excitability of the auditory nerve (Shepherd and Clark, 1986). The present study was designed to examine the mechanisms underlying these stimulus induced reductions in excitability. These results will have implications for the maximum safe and effective stimulus rates that can be employed in cochlear implants.