Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    The biologic safety of the Cochlear Corporation multiple-electrode intracochlear implant
    Webb, Robert L. ; Clark, Graeme M. ; Shepherd, Robert K. ; Franz, Burkhard K-H. ; Pyman, Brian C. ( 1988)
    Studies have been undertaken to confirm the biologic safety of the Cochlear Corporation multi-electrode intracochlear implant. The materials used are biocompatible. The electrode array is flexible: it can be inserted with minimal or no trauma, providing the insertion is stopped when resistance is first felt. An atraumatic insertion is facilitated if a good view is obtained along the scala tympani of the basal turn of the cochlea by drilling through the crista fenestrae. The passage of the electrode around the cochlea can be facilitated if the electrode is rotated during insertion (clockwise for the left and anticlockwise for the right cochlea). The electrode can be explanted and another one reinserted with minimal or no trauma. A seal established around the electrode after an implantation period of 2 weeks can prevent infection extending from the middle to the inner ear. The electrical stimulus parameters produced by the Nucleus receiver-stimulator cause no loss of spiral ganglion cells or corrosion of the platinum band electrodes. Long-term stimulation has been carried out for up to 8 years in patients without affecting their clinical performance.
  • Item
    Thumbnail Image
    Effect of high electrical stimulus intensities on the auditory nerve using brain stem response and audiometry
    Shepherd, R. K. ; Clark, Graeme M. ( 1987)
    The response of the auditory nerve to acute intracochlear electrical stimulation using charge-balanced biphasic current pulses was monitored using electrically evoked auditory brain stem responses (EABRs). Stimulation at moderate charge densities (64 µC cm-2 geom/ phase; 0.8 mA, 200 µs/phase) for periods of up to 12 hours produced only minimal short-term changes in the EABR. Stimulation at a high charge density (144 µC cm-2 geom/phase; 1.8 mA, 200 µs/phase) resulted in permanent reductions in the EABR for high stimulus rates (> 200 pulses per second [pps]) or long stimulus durations (12 hours). At lower stimulus rates and durations, recovery to prestimulus levels was slow but complete. The mechanisms underlying these temporary and permanent reductions in the EABR are probably caused by neural adaptation and more long-term metabolic effects. These findings have implications for the design of speech-processing strategies using high stimulus rates.
  • Item
    Thumbnail Image
    Responses of cat auditory nerve fibers to biphasic electrical current pulses
    Javel, E. ; Tong, Y. C. ; Shepherd, R. K. ; Clark, Graeme M. ( 1987)
    Discharge patterns of single auditory nerve fibers were recorded from normal-hearing cats implanted with a I2-band intracochlear electrode array. Stimuli were biphasic current pulses of specifiable width, amplitude, and rate. Acoustic tuning curves were obtained to determine the cochlear positions of the fibers. Response latencies to electrical stimuli formed two groups. Short latency (0.3 to 0.7 ms) responses were attributed to direct activation of spiral ganglion neurons. At high stirnulus intensities, these often exhibited abrupt shifts toward even shorter latencies. Long latency (> 1.5 ms) responses were probably caused by electrophonic activation of functional hair cells. Response thresholds to electrical stimuli depended on a fiber's proximity to the stimulating electrodes, and they did not depend on a fiber's acoustic response threshold or spontaneous discharge rate. High intensity (> 1.5 mA) stimuli could excite fibers over a wide range of characteristic frequencies, even for the narrowest (0.45 mm) electrode separations. Response threshold was an exponentially decreasing function of pulse width for widths up to 300µs/phase. Fiber discharges were highly phase-locked at all suprathreshold intensities, and saturation discharge rates usually equaled stimulus pulse rates for rates up to at least 800 pulses/s. Dynamic ranges were small (I to 6 dB), increased with pulse rate, and were uncorrelated with electrical response threshold. Within the dynamic range, shapes of poststimulus time and interspike interval histograms resembled those obtained in response to acoustic stimuli. Depolarization block caused fiber activity to cease in 2 to 5 seconds for sustained stimuli presented at high (> 600 pulses/s) pulse rates and intensities.
  • Item
    Thumbnail Image
    Middle ear infection postimplantation: response of the round window membrane to Streptococcus pyogenes
    Cranswick, N. E. ; Franz, B. K-H. ; Clark, Graeme M. ; Shepherd, R. K. ; Bloom, D. M. ( 1987)
    The seal of the implanted round window membrane to resist Streptococcus pyogenes invasion from the middle ear was investigated in 12 cats. Results showed that the implanted round window membrane is able to form a barrier for S pyogenes starting 1 week postimplantation. Under normal conditions S pyogenes did not pass through the round window membrane, nor through the gap that existed between the membrane and the prosthesis. Mechanical disruption of the round window seal, however, and severe inflammatory response to S pyogenes caused the infection to extend into the inner ear.
  • Item
    Thumbnail Image
    Surgery for the safe insertion and reinsertion of the banded electrode array
    Clark, Graeme M. ; Pyman, B. C. ; Webb, R. L. ; Franz, B. K-H. G. ; Redhead, T. J. ; Shepherd, R. K. ( 1987)
    Adhering to the surgical technique outlined in the protocol for the Nucleus implant has resulted in over 100 patients worldwide obtaining significant benefit from multichannel stimulation. A detailed analysis of the results in 40 patients shows that it improves their awareness of environmental sounds and their abilities in understanding running speech when combined with lipreading. In addition, one third to one half of the patients also understand significant amounts of running speech without lipreading and some can have interactive conversations over the telephone. It is clear that any insertion trauma is not significant, which is confirmed by the excellent clinical results.
  • Item
    Thumbnail Image
    Pneumococcal middle ear infection and cochlear implantation
    Berkowitz, R. G. ; Franz, B. K-H. ; Shepherd, R. K. ; Clark, Graeme M. ; Bloom, D. M. ( 1987)
    A limited study for the experimental induction of pneumococcal otitis media is presented. It is a useful model to study the effects of otitis media in the implanted and nonimplanted cochlea of the cat. Pneumococcal otitis media caused minor pathological changes in two nonimplanted cochleas and more widespread changes together with significant loss of neural elements in two implanted cochleas. However, the small number of animals used in this study did not allow us to distinguish between the effects of electrode insertion trauma, infection, or the combination of both.
  • Item
    Thumbnail Image
    Cochlear implant round window sealing procedures in the cat: an investigation of autograft and heterograft materials
    Clark, Graeme M. ; Shepherd, R. K. ( 1984)
    In this series of experiments it was shown that a round window seal produced with a muscle autograft or a Teflon felt disc glued to the electrode prevented a Staphylococcus aureus infection in the bulla extending to the cochlea. The seal following a fascial autograft also prevented β-haemolytic streptococci type A spreading to the basal turn of the cochlea. On the other hand Dacron® velour is contra-indicated as it was associated with a strong inflammatory response and a high incidence of infection. The studies also indicated that infection can extend to the cochlea before the round window membrane has healed. The junctional area between the graft and the margin of the round window niche is a potentially vulnerable site.
  • Item
    Thumbnail Image
    Surgery for an improved multiple-channel cochlear implant
    Clark, Graeme M. ; Pyman, Brian C. ; Webb, Robert L. ; Bailey, Quentin E. ; Shepherd, Robert K. ( 1984)
    An improved multiple-channel cochlear implant has been developed. The titanium container with enclosed electronics, the receiver coil and the connector are embedded in medical-grade Silastic. The upper half of the implant has a diameter of 35 mm and a height of 4.5 mm. and the lower half a diameter of 23 mm and a height of.5 mm. The electrode array has also been designed to reduce the possibility of breakage due to repeated movements over many years. The surgery involves drilling a bed in the mastoid bone for the receiver-stimulator, and fixing the proximal electrode under the mastoid cortex. Gentle insertion of the electrode array through the round window and along the seala tympani is achieved with a specially designed microclaw.