Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 14
  • Item
    Thumbnail Image
    Cochlear pathology following chronic electrical stimulation of the auditory nerve. I: Normal hearing kittens
    Ni, Daofeng ; Shepherd, Robert K. ; Seldon, Lee ; Xu, Shi-Ang ; Clark, Graeme M. ; Millard, Rodney E. ( 1992)
    The present study examines the histopathological effects of long-term intracochlear electrical stimulation in young normal hearing animals. Eight-week old kittens were implanted with scala tympani electrode arrays and stimulated for periods of up to 1500 h using charge balanced biphasic current pulses at charge densities in the range 21-52 µC cm^-2 geom. per phase. Both click and electrically evoked auditory brainstem responses were periodically recorded to monitor the status of the hair cell and spiral ganglion cell populations. In addition, the impedance of the stimulating electrodes was measured daily to monitor their electrical characteristics during chronic implantation. Histopathological examination of the cochleas showed no evidence of stimulus induced damage to cochlear structures when compared with implanted, unstimulated control cochleas. Indeed, there was no statistically significant difference in the ganglion cell density adjacent to the stimulating electrodes when compared with a similar population in implanted control cochleas. In addition, hair cell loss, which was restricted to regions adjacent to the electrode array, was not influenced by the degree of electrical stimulation. These histopathological findings were consistent with the evoked potential recordings. Finally, electrode impedance data correlated well with the degree of tissue growth observed within the scala tympani. The present findings indicate that the young mammalian cochlea is no more susceptible to cochlear pathology following chronic implantation and electrical stimulation than is the adult.
  • Item
    Thumbnail Image
    A physiological investigation of chronic electrical stimulation with scala tympani electrodes in kittens
    Ni, Daofeng ; Shepherd, Robert K. ; Clark, Graeme M. ( 1992)
    A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses' for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The aptitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/ output function. The absolute latencies and interwave latencies of waves II-III , III -IV and II -IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.
  • Item
    Thumbnail Image
    Evaluation of expandable leadwires for paediatric cochlear implants
    Xu, Shi-Ang. ; Shepherd, Robert K. ; Clark, Graeme M. ; Tong, Yit C. ; Williams, John F. ( 1993)
    The development of cochlear implants for use in very young children (1-2 years old) will require techniques designed to accommodate temporal bone growth. Previous anatomic studies have shown that the leadwire of a cochlear implant must be capable of expanding up to 20 mm between the round window and the implanted receiver-stimulator in response to skull growth. In the present study morphologic and biomechanical evaluation of five expandable leadwire designs was conducted following their implantation in young cats. Two helical shaped leadwire designs frequently exhibited extensive fibrous tissue adhesions and broke during long-term implantation. In contrast, thin, flexible Silastic envelopes were effective in minimizing tissue adhesions. Residual V- and Z-shaped leadwires, placed in these envelopes, showed little evidence of fibrous tissue adhesions following implantation periods of up to 2 years. Moreover, these leadwires readily expanded both during the growth of the animal and when biomechanical expansion studies performed at the completion of the implant period. These expandable leadwire designs appear to be appropriate candidates for use in pediatric cochlear implants.
  • Item
    Thumbnail Image
    Profound hearing loss in the cat following the single co-administration of kanamycin and ethacrynic acid
    Xu, Shi-Ang ; Shepherd, Robert K. ; Chen, Yin ; Clark, Graeme M. ( 1993)
    Co-administration of kanamycin (KA) with the loop diuretic ethacrynic acid (EA) has previously been shown to produce a rapid and profound hearing loss in guinea pigs. In the present study we describe a modified technique for developing a profound hearing loss in cats. By monitoring the animal's hearing status during the intravenous infusion of EA the technique minimizes the effects of individual variability to the drug regime. Seven cats received a subcutaneous injection of KA (300 mg/kg) followed by intravenous infusion of EA (1 mg/min). Click-evoked auditory brainstem responses (ABRs) were recorded to monitor the animal's hearing during the infusion. When the ABR thresholds rose rapidly to levels in excess of 90 dB SPL the infusion of EA was stopped. This occurred at EA doses of 10-25 mg/kg, indicating considerable individual variability to the deafening procedure. However, there was a strong negative correlation (r = - 0.93) between the EA dose and body weight which accounted for much of this variability. Subsequent ABR monitoring showed that this profound hearing loss was both bilateral and permanent. Significantly, blood urea and creatinine levels, monitored for periods of up to three days after the procedure, remained within the normal range. Furthermore, there was no clinical evidence of renal dysfunction as indicated by weight loss or oliguria. Cochlear histopathology, examined after a two months to three year survival period, showed an absence of all inner and outer hair cells in the majority of cochleas. The extent of loss of spiral ganglion cells was dependent on their distance from the round window and the period of survival following the deafening procedure. Clearly, the degeneration of spiral ganglion cells continued for several years following the initial insult. Finally, we observed no evidence of renal histopathology. In conclusion, the co-administration of KA and EA produces a profound hearing loss in cats without evidence of renal impairment. Monitoring the animal's hearing status during the procedure ensures that the dose of EA can be optimised for individual animals. Moreover, it may be possible to adapt this procedure to produce animal models with controlled high frequency hearing losses.
  • Item
    Thumbnail Image
    Effect of chronic electrical stimulation on cochlear nucleus neuron size in normal hearing kittens
    Ni, Daofeng ; Seldon, H. Lee. ; Shepherd, Robert K. ; Clark, Graeme M. ( 1993)
    Very young cochlear-implant candidates may have undetected islands of residual hearing. Would the maturation of these functioning auditory neurons be affected by chronic cochlear stimulation? This was tested by examining neuron sizes in the cochlear nuclei of young, normal hearing kittens with and without chronic cochlear stimulation. Six animals received bilateral intra-or extracochlear implants and were electrically stimulated unilaterally for periods of 1,000-1,500 hours. After sacrifice, cross-sectional areas of approximately 11,000 neuron somata in the cochlear nuclei were measured with an image-analysis system. There were statistically significant differences between stimulated and unstimulated nuclei, especially the posteroventral cochlear nucleus (PYCN), in individual cats, but the directions of the differences were inconsistent. Overall, there was no significant effect of electrical stimulation on soma size. These results indicate that chronic electrical stimulation of the auditory nerve has no positive or negative trophic effects on otherwise innervated, maturing cochlear nucleus neurons.
  • Item
    Thumbnail Image
    Dimensions of the scala tympani in the human and cat with reference to cochlear implants
    Hatsushika, Shin-ichi ; Shepherd, Robert K. ; Tong, Yit C. ; Clark, Graeme M. ; Funasaka, Sotaro ( 1990)
    The width, height, and cross-sectional area of the scala tympani in both the human and cat were measured to provide dimensional information relevant to the design of scala tympani electrode arrays. Both the height and width of the human scala tympani decrease rapidly within the first 1.5 mm from the round window. Thereafter, they exhibit a gradual reduction in their dimension with increasing distance from the round window. The cross-sectional area of the human scala tympani reflects the changes observed in both the height and width. In contrast, the cat scala tympani exhibits a rapid decrease in its dimensions over the first 6 to B mm from the round window. However, beyond this point the cat scala tympani also exhibits a more gradual decrease in its dimensions. Finally, the width of the scala tympani, in both human and cat, is consistently greater than the height.
  • Item
    Thumbnail Image
    Responses of cat auditory nerve fibers to biphasic electrical current pulses
    Javel, E. ; Tong, Y. C. ; Shepherd, R. K. ; Clark, Graeme M. ( 1987)
    Discharge patterns of single auditory nerve fibers were recorded from normal-hearing cats implanted with a I2-band intracochlear electrode array. Stimuli were biphasic current pulses of specifiable width, amplitude, and rate. Acoustic tuning curves were obtained to determine the cochlear positions of the fibers. Response latencies to electrical stimuli formed two groups. Short latency (0.3 to 0.7 ms) responses were attributed to direct activation of spiral ganglion neurons. At high stirnulus intensities, these often exhibited abrupt shifts toward even shorter latencies. Long latency (> 1.5 ms) responses were probably caused by electrophonic activation of functional hair cells. Response thresholds to electrical stimuli depended on a fiber's proximity to the stimulating electrodes, and they did not depend on a fiber's acoustic response threshold or spontaneous discharge rate. High intensity (> 1.5 mA) stimuli could excite fibers over a wide range of characteristic frequencies, even for the narrowest (0.45 mm) electrode separations. Response threshold was an exponentially decreasing function of pulse width for widths up to 300µs/phase. Fiber discharges were highly phase-locked at all suprathreshold intensities, and saturation discharge rates usually equaled stimulus pulse rates for rates up to at least 800 pulses/s. Dynamic ranges were small (I to 6 dB), increased with pulse rate, and were uncorrelated with electrical response threshold. Within the dynamic range, shapes of poststimulus time and interspike interval histograms resembled those obtained in response to acoustic stimuli. Depolarization block caused fiber activity to cease in 2 to 5 seconds for sustained stimuli presented at high (> 600 pulses/s) pulse rates and intensities.
  • Item
    Thumbnail Image
    Middle ear infection postimplantation: response of the round window membrane to Streptococcus pyogenes
    Cranswick, N. E. ; Franz, B. K-H. ; Clark, Graeme M. ; Shepherd, R. K. ; Bloom, D. M. ( 1987)
    The seal of the implanted round window membrane to resist Streptococcus pyogenes invasion from the middle ear was investigated in 12 cats. Results showed that the implanted round window membrane is able to form a barrier for S pyogenes starting 1 week postimplantation. Under normal conditions S pyogenes did not pass through the round window membrane, nor through the gap that existed between the membrane and the prosthesis. Mechanical disruption of the round window seal, however, and severe inflammatory response to S pyogenes caused the infection to extend into the inner ear.
  • Item
    Thumbnail Image
    A multiple-electrode intracochlear implant for children
    Clark, Graeme M. ; Blamey, Peter J. ; Busby, Peter A. ; Dowell, Richard C. ; Franz, Burkhard K-H. ; Musgrave, Gaye Nicholls ; Nienhuys, Terry G. ; Pyman, Brian C. ; Roberts, Susan A. ; Tong, Yit C. ; Webb, Robert L. ; Kuzma, Januz A. ; Money, David K. ; Patrick, James F. ; Seligman, Peter M. ( 1987)
    A multiple-electrode intracochlear implant that provides 21 stimulus channels has been designed for use in young children. It is smaller than the adult version and has magnets to facilitate the attachment of the headset. It has been implanted in two children aged 5 and 10 years. The two children both lost hearing in their third year, when they were still learning language. Following implantation, it was possible to determine threshold and comfortable listening levels for each electrode pair. This was facilitated in the younger child by prior training in scaling visual and electrotactile stimuli. Both children are regular users of the implant, and a training and assessment program has been commenced.
  • Item
    Thumbnail Image
    Pneumococcal middle ear infection and cochlear implantation
    Berkowitz, R. G. ; Franz, B. K-H. ; Shepherd, R. K. ; Clark, Graeme M. ; Bloom, D. M. ( 1987)
    A limited study for the experimental induction of pneumococcal otitis media is presented. It is a useful model to study the effects of otitis media in the implanted and nonimplanted cochlea of the cat. Pneumococcal otitis media caused minor pathological changes in two nonimplanted cochleas and more widespread changes together with significant loss of neural elements in two implanted cochleas. However, the small number of animals used in this study did not allow us to distinguish between the effects of electrode insertion trauma, infection, or the combination of both.