Graeme Clark Collection

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Evaluation of leadwire fixation for paediatric cochlear implants [Abstract]
    Xu, S. A. ; Shepherd, R. K. ; Clark, Graeme M. ( 1994)
    A paediatric cochlear implant should include a leadwire system that can readily expand in the presence of tissue adhesions and can be effectively fixed at a site close to the cochlea to ensure that the electrode array is not displaced during skull growth. In this study, leadwires were implanted in six young animals for a period of five months. During explantation, the mean force � standard deviation required to expand individual leadwire was found to be 12.5 � 5.0g. In order to evaluate the efficacy of leadwire fixation techniques, four fixation procedures were initially developed in human temporal bones and subsequently used to fix leadwires implanted in the temporal bones of eight animals for a period of four months. Leadwires were fixed by platinum wires at the fossa incudis or by platinum wires with a titanium barbed nail at the mastoid. The biomechanical evaluation revealed that the forces required to displace the leadwire from fixation points were 70.6 � 33.5g. Significantly, the forces required to withdraw a chronically implanted electrode array from an animal cochlea were 1.5 � 0.4g. The present results highlight the importance of an effective leadwire fixation technique for paediatric cochlear implants, particularly in preventing the displacement of an electrode array from the cochlea during skull growth.
  • Item
    Thumbnail Image
    Electrical stimulation of the auditory nerve: comparison of half-band with full-band scala tympani bipolar electrodes
    Xu, Shi-Ang ; McAnally, Ken I. ; Xu, J. ; Shepherd, R. K. ; Clark, Graeme M. ( 1993)
    The Melbourne/Cochlear auditory prosthesis uses an intracochlear electrode array containing 22 circumferential full-band electrodes mounted on a Silastic carrier. It could be hypothesized that half-band electrodes, oriented towards the modiolus, would produce lower stimulus thresholds than conventional full-band electrodes. This hypothesis is based on the assumption that, compared with full-band electrodes, half-band electrodes would produce an electrical field in which a greater proportion of the current would excite a defined group of neurons. In order to verify this hypothesis we recorded electrically evoked auditory brainstem responses (EABRs) for both full- and half-band electrodes inserted in the scala tympani of deafened cats. EABR thresholds for half-band electrodes oriented towards the modiolus were not significantly different from thresholds evoked using full-band electrodes (p>0.05, paired t-test), whereas thresholds evoked using half-band electrodes oriented towards the outer scala wall were significantly higher (p<0.01) than either the modiolar half-band or the full-band electrodes. These physiological results suggest that the electrical field generated within the auditory nerve by modiolar oriented half-band electrodes does not differ significantly from that produced by full-band electrodes. On the basis of these results, together with the fact that half-band electrodes would have higher current densities and electrode impedances, and would require careful orientation during implantation, we consider that there is no benefit in incorporating half-band electrodes in the design of scala tympani electrode arrays.
  • Item
    Thumbnail Image
    Multichannel cochlear implants in children: an overview of experimental and clinical results [Abstract]
    Shepherd, Robert K. ; Dowell, Richard C. ; Xu, Shi-Ang ; Clark, Graeme M. ; McDermott, Hugh J. ; McKay, Colette M. ( 1991)
    During the last decade there has been great progress in the clinical management of profound, postlinguistically deafened adults through the use of multichannel cochlear implants. The device developed by Cochlear Pty. Ltd. in association with the University of Melbourne, electrically stimulates selective regions of the residual auditory nerve using an array of 22 Pt electrodes located within the scala tympani. A speech processing strategy has been developed to provide patients with both voice pitch, and first and second formant information. Following experimental safety studies and successful clinical trials, this device was approved for use in adults by the United States FDA in 1985. In 1990, following further miniaturization of the implant, the FDA approved the device for use in profoundly deafened children above the age of two years. The present paper presents an overview of our recent biological safety studies and clinical experience with cochlear implants in children, and discusses the likely future development of these devices. Our biological safety studies were designed to evaluate the safety and design requirements of cochlear implantation in children, and more recently has focussed on issues for implantation in very young children (< 2 years old). These studies included the measurement of growth in the human temporal bone and the development of lead wires that can accommodate such growth, the development of an electrode fixation technique close to the cochlea, the effect of cochlear implantation on skull growth, the effect of long-term electrical stimulation on the maturing auditory system and the stimulating electrodes, and the effect of middle ear infection on cochlear implantation. Our clinical experience is based on twenty-five children that have now been implanted in our clinic. They include (i) postlinguistically deafened children; (ii) congenitally or early-deafened young children; and (iii) congenitally or early deafened adolescents. Clinical testing has shown improvements in speech perception, speech production and language in all three groups. Postlinguistically deafened children show similar speech perception results to postlinguistically deafened adults. For the congenitally deaf, younger children tend to show better results than the adolescents. Significantly, these clinical results are consistent with results from 142 children obtained from clinics throughout the world. These experimental and clinical results support the use of cochlear implants in young children. Further clinical improvements can be expected in the future with advances in both hardware and speech processing strategies.
  • Item
    Thumbnail Image
    Cochlear implant safety studies [Abstract]
    Shepherd, Robert K. ; Clark, Graeme M. ; Xu, Shi-Ang ; Franz, Burkhard K-H. G. ( 1991)
    We have examined a number of safety issues associated with cochlear implantation in both adults and children and confirm that it is safe. The results of these studies may be summarized as follows: 1) The insertion of a free-fit scala tympani array into the human cochlea produces minimal damage to cochlear structures provided insertion is stopped at the point of first resistance. 2) Chronic intracochlear implantation and electrical stimulation using charge balanced biphasic current pulses does not result in neural degeneration or evoke an adverse tissue reaction within the cochlea. 3) The use of fascia to seal the implanted round window results in an effective barrier to the spread of infection into the cochlea. 4) Temporal bone studies have shown that the distance between the round window and the fossa incudis remains essentially unchanged from birth. Therefore, the fossa incudis provides a suitable fixation point for the electrode array in young children. This study also showed that the distance from the round window to the implanted receiver-stimulator undergoes significant change in children of up to two years of age. These children would require an expanding leadwire system. 5) Finally, long-term effects of cochlear implant surgery on skull growth have shown that this should not be a problem when implanting very young children. This work was supported by the NIH (NOI-NS-7-2342).